#TITLE_ALTERNATIVE#
Graph G is a nonempty set V(G) of vertices and a set E(G) of edges. For any positive integer m,n, a ramsey number r(m,n) is the least integer r such that for any red-blue coloring on the edges of complete graph Kr on r vertices there always exists either a red complete graph Km or a blue complete gr...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/15776 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:15776 |
---|---|
spelling |
id-itb.:157762017-09-27T11:43:10Z#TITLE_ALTERNATIVE# DHASKABIMA (NIM : 10106076); Pembimbing : Prof. Dr. Edy Tri Baskoro , GILANG Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/15776 Graph G is a nonempty set V(G) of vertices and a set E(G) of edges. For any positive integer m,n, a ramsey number r(m,n) is the least integer r such that for any red-blue coloring on the edges of complete graph Kr on r vertices there always exists either a red complete graph Km or a blue complete graph Kn as a subgraph. For certain graphs F, G and H, notation of F -> (G,H) means that if any red-blue coloring on the edges of F, there will occur a red subgraph G or a blue subgraph H on F. A (G,H)-coloring is a 2-coloring (red-blue coloring) if neither a red G nor a blue H occurs. Graph F is Ramsey (G,H)-minimal if for any redblue edge coloring of F, there exists a red subgraph G or a blue subgraph H on F and there exists a redblue coloring on F-{e}, for any edge e, such that neither a red subgraph G nor a blue subgraph H occurs. Let R(G,H) be the class consists of all Ramsey (G,H)-minimal graph. In this final project, we investigate the class R(P3,H). We will give a number of graphs which are in this ramsey minimal set. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Graph G is a nonempty set V(G) of vertices and a set E(G) of edges. For any positive integer m,n, a ramsey number r(m,n) is the least integer r such that for any red-blue coloring on the edges of complete graph Kr on r vertices there always exists either a red complete graph Km or a blue complete graph Kn as a subgraph. For certain graphs F, G and H, notation of F -> (G,H) means that if any red-blue coloring on the edges of F, there will occur a red subgraph G or a blue subgraph H on F. A (G,H)-coloring is a 2-coloring (red-blue coloring) if neither a red G nor a blue H occurs. Graph F is Ramsey (G,H)-minimal if for any redblue edge coloring of F, there exists a red subgraph G or a blue subgraph H on F and there exists a redblue coloring on F-{e}, for any edge e, such that neither a red subgraph G nor a blue subgraph H occurs. Let R(G,H) be the class consists of all Ramsey (G,H)-minimal graph. In this final project, we investigate the class R(P3,H). We will give a number of graphs which are in this ramsey minimal set. |
format |
Final Project |
author |
DHASKABIMA (NIM : 10106076); Pembimbing : Prof. Dr. Edy Tri Baskoro , GILANG |
spellingShingle |
DHASKABIMA (NIM : 10106076); Pembimbing : Prof. Dr. Edy Tri Baskoro , GILANG #TITLE_ALTERNATIVE# |
author_facet |
DHASKABIMA (NIM : 10106076); Pembimbing : Prof. Dr. Edy Tri Baskoro , GILANG |
author_sort |
DHASKABIMA (NIM : 10106076); Pembimbing : Prof. Dr. Edy Tri Baskoro , GILANG |
title |
#TITLE_ALTERNATIVE# |
title_short |
#TITLE_ALTERNATIVE# |
title_full |
#TITLE_ALTERNATIVE# |
title_fullStr |
#TITLE_ALTERNATIVE# |
title_full_unstemmed |
#TITLE_ALTERNATIVE# |
title_sort |
#title_alternative# |
url |
https://digilib.itb.ac.id/gdl/view/15776 |
_version_ |
1820737545591324672 |