DIMENSIONS OF GRAF METRIC KARTESIUS MULTIPLICATION K1,m X G
The metric dimension of a graph is one of the graph problems which receives much attention, recently. For a connected graph G = (V,E), define the metric dimension of G, denoted by beta(G), as the minimum cardinality of set S c V <br /> <br /> <br /> <br /> <br /...
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/16341 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:16341 |
---|---|
spelling |
id-itb.:163412017-09-27T14:41:42ZDIMENSIONS OF GRAF METRIC KARTESIUS MULTIPLICATION K1,m X G RACHMAN (NIM : 90110001); Pembimbing : Prof. Dr. Edy Tri Baskoro, MAMAN Indonesia Theses INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/16341 The metric dimension of a graph is one of the graph problems which receives much attention, recently. For a connected graph G = (V,E), define the metric dimension of G, denoted by beta(G), as the minimum cardinality of set S c V <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> Jose Caceres,et al (2) have shown the lower and upper bounds of the metric dimension of the Cartesian product between any graph G and a path Pn <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> In this thesis, we determine the exact value of the metric dimension of the Cartesian <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> product K1,m x Pn and K1,m x Cn, where K1,m is a star graph on m + 1 vertices text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
The metric dimension of a graph is one of the graph problems which receives much attention, recently. For a connected graph G = (V,E), define the metric dimension of G, denoted by beta(G), as the minimum cardinality of set S c V <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
Jose Caceres,et al (2) have shown the lower and upper bounds of the metric dimension of the Cartesian product between any graph G and a path Pn <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
In this thesis, we determine the exact value of the metric dimension of the Cartesian <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
product K1,m x Pn and K1,m x Cn, where K1,m is a star graph on m + 1 vertices |
format |
Theses |
author |
RACHMAN (NIM : 90110001); Pembimbing : Prof. Dr. Edy Tri Baskoro, MAMAN |
spellingShingle |
RACHMAN (NIM : 90110001); Pembimbing : Prof. Dr. Edy Tri Baskoro, MAMAN DIMENSIONS OF GRAF METRIC KARTESIUS MULTIPLICATION K1,m X G |
author_facet |
RACHMAN (NIM : 90110001); Pembimbing : Prof. Dr. Edy Tri Baskoro, MAMAN |
author_sort |
RACHMAN (NIM : 90110001); Pembimbing : Prof. Dr. Edy Tri Baskoro, MAMAN |
title |
DIMENSIONS OF GRAF METRIC KARTESIUS MULTIPLICATION K1,m X G |
title_short |
DIMENSIONS OF GRAF METRIC KARTESIUS MULTIPLICATION K1,m X G |
title_full |
DIMENSIONS OF GRAF METRIC KARTESIUS MULTIPLICATION K1,m X G |
title_fullStr |
DIMENSIONS OF GRAF METRIC KARTESIUS MULTIPLICATION K1,m X G |
title_full_unstemmed |
DIMENSIONS OF GRAF METRIC KARTESIUS MULTIPLICATION K1,m X G |
title_sort |
dimensions of graf metric kartesius multiplication k1,m x g |
url |
https://digilib.itb.ac.id/gdl/view/16341 |
_version_ |
1820745348115595264 |