#TITLE_ALTERNATIVE#

Norm equivalence between convolution operator in the discrete space (discrete analogue) and convolution in the continue space was given by Magyar, Stein, and Wainger in [3] focusing on Fourier transform. Hilbert transform was written sophisticately by King in [1]. This undergraduate thesis shows the...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: PUSAP (NIM: 10107009); Pembimbing : Wono Setya Budhi, Ph. D., SUHENDI
التنسيق: Final Project
اللغة:Indonesia
الوصول للمادة أونلاين:https://digilib.itb.ac.id/gdl/view/17321
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Institut Teknologi Bandung
اللغة: Indonesia
الوصف
الملخص:Norm equivalence between convolution operator in the discrete space (discrete analogue) and convolution in the continue space was given by Magyar, Stein, and Wainger in [3] focusing on Fourier transform. Hilbert transform was written sophisticately by King in [1]. This undergraduate thesis shows the relation between [3] and [1] regarding Hilbert transform as a convolution. The &#133;rst part gives some details for [3], the second part narrows down the way of &#133;nding the Hilbert transform using the complex function approach, especially via Poisson Integral Formula, and <br /> <br /> <br /> the last part investigates norm boundedness on the analog of the discrete Hilbert transform. Although there is nothing new, this undergraduate thesis gives the more <br /> <br /> <br /> simple perspective on those matters for the easing of reading a book or paper for undergraduate students.