#TITLE_ALTERNATIVE#

This thesis discusses the boundedness of fractional integral operators on homogeneous <br /> <br /> <br /> <br /> <br /> and nonhomogeneous Lebesgue spaces, Morrey spaces and Generalized Morrey spaces. <br /> <br /> <br /> <br /> <...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: NURHAYATI ( NIM : 20111031 )PEMBIMBING : Prof. Dr. Hendra Gunawan, LINA
التنسيق: Theses
اللغة:Indonesia
الوصول للمادة أونلاين:https://digilib.itb.ac.id/gdl/view/18839
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Institut Teknologi Bandung
اللغة: Indonesia
الوصف
الملخص:This thesis discusses the boundedness of fractional integral operators on homogeneous <br /> <br /> <br /> <br /> <br /> and nonhomogeneous Lebesgue spaces, Morrey spaces and Generalized Morrey spaces. <br /> <br /> <br /> <br /> <br /> Especially, we will prove the boundedness of generalized fractional integral operators on <br /> <br /> <br /> <br /> <br /> non homogeneous Morey spaces. The proof of the boundedness of generalized fractional <br /> <br /> <br /> <br /> <br /> integral operators on the non homogeneous Morey spaces uses the property of maximal <br /> <br /> <br /> <br /> <br /> operators defined on this space and the Hedberg inequality. The result is an extension of <br /> <br /> <br /> <br /> <br /> Hardy- Littlewood-Sobolev inequality [11,21].