#TITLE_ALTERNATIVE#
This thesis is about 4-dimensional Riemannian manifold with torus symmetry. We <br /> <br /> <br /> <br /> <br /> <br /> <br /> present the constant Ricci Scalar condition with the assumption of selfduality. The <br /> <br /> <...
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/19332 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:19332 |
---|---|
spelling |
id-itb.:193322017-09-27T14:41:01Z#TITLE_ALTERNATIVE# NATANAEL WIJAYA (NIM. 20212035)Pembimbing : Dr. rer. nat Bobby Eka Gunara, RIO Indonesia Theses INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/19332 This thesis is about 4-dimensional Riemannian manifold with torus symmetry. We <br /> <br /> <br /> <br /> <br /> <br /> <br /> present the constant Ricci Scalar condition with the assumption of selfduality. The <br /> <br /> <br /> <br /> <br /> <br /> <br /> metric we use is Joyce metric which reduce the selfdual condition from second order <br /> <br /> <br /> <br /> <br /> <br /> <br /> to first order partial diferential equation. These equations is the condition for four <br /> <br /> <br /> <br /> <br /> <br /> <br /> function (A0, A1, B0, and B1) in the metric. The explicit solution is obtained <br /> <br /> <br /> <br /> <br /> <br /> <br /> with the assumption of separation of variables. We also proved that the separation <br /> <br /> <br /> <br /> <br /> <br /> <br /> constant cannot both be zero, for the metric will become singular. The solution <br /> <br /> <br /> <br /> <br /> <br /> <br /> for constant Ricci scalar is obtained after we conformally transformed the metric. <br /> <br /> <br /> <br /> <br /> <br /> <br /> Conformal transformation with scale factor =G2 will results in Calderbank-Pedersen <br /> <br /> <br /> <br /> <br /> <br /> <br /> metic with negative scalar Curvature. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
This thesis is about 4-dimensional Riemannian manifold with torus symmetry. We <br />
<br />
<br />
<br />
<br />
<br />
<br />
present the constant Ricci Scalar condition with the assumption of selfduality. The <br />
<br />
<br />
<br />
<br />
<br />
<br />
metric we use is Joyce metric which reduce the selfdual condition from second order <br />
<br />
<br />
<br />
<br />
<br />
<br />
to first order partial diferential equation. These equations is the condition for four <br />
<br />
<br />
<br />
<br />
<br />
<br />
function (A0, A1, B0, and B1) in the metric. The explicit solution is obtained <br />
<br />
<br />
<br />
<br />
<br />
<br />
with the assumption of separation of variables. We also proved that the separation <br />
<br />
<br />
<br />
<br />
<br />
<br />
constant cannot both be zero, for the metric will become singular. The solution <br />
<br />
<br />
<br />
<br />
<br />
<br />
for constant Ricci scalar is obtained after we conformally transformed the metric. <br />
<br />
<br />
<br />
<br />
<br />
<br />
Conformal transformation with scale factor =G2 will results in Calderbank-Pedersen <br />
<br />
<br />
<br />
<br />
<br />
<br />
metic with negative scalar Curvature. |
format |
Theses |
author |
NATANAEL WIJAYA (NIM. 20212035)Pembimbing : Dr. rer. nat Bobby Eka Gunara, RIO |
spellingShingle |
NATANAEL WIJAYA (NIM. 20212035)Pembimbing : Dr. rer. nat Bobby Eka Gunara, RIO #TITLE_ALTERNATIVE# |
author_facet |
NATANAEL WIJAYA (NIM. 20212035)Pembimbing : Dr. rer. nat Bobby Eka Gunara, RIO |
author_sort |
NATANAEL WIJAYA (NIM. 20212035)Pembimbing : Dr. rer. nat Bobby Eka Gunara, RIO |
title |
#TITLE_ALTERNATIVE# |
title_short |
#TITLE_ALTERNATIVE# |
title_full |
#TITLE_ALTERNATIVE# |
title_fullStr |
#TITLE_ALTERNATIVE# |
title_full_unstemmed |
#TITLE_ALTERNATIVE# |
title_sort |
#title_alternative# |
url |
https://digilib.itb.ac.id/gdl/view/19332 |
_version_ |
1822018907567816704 |