PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1
Let G = (V (G);E(G)) be a graph and H be a subgraph of G. Graph G admits H-covering, if every edge in G belongs to subgraph of G isomorphic to H. An H-magic labelling of G which admits H-covering is a bijection f : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that there is a magic constant C s...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/19759 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:19759 |
---|---|
spelling |
id-itb.:197592017-09-27T11:43:12ZPELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1 NANDA MARDANI, ZAGALO Indonesia Final Project complete graph, corona operation,H-magic labelling, (a; d)-H-antimagic labelling INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/19759 Let G = (V (G);E(G)) be a graph and H be a subgraph of G. Graph G admits H-covering, if every edge in G belongs to subgraph of G isomorphic to H. An H-magic labelling of G which admits H-covering is a bijection f : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that there is a magic constant C satisfies wt(Hi) = P v2V (Hi) f(v) + P e2E(Hi) f(e) = C for every subgraphs Hi isomorphic to H. When f(V (G)) = f1; 2; :::; jV (G)jg, the labelling f is called super H-magic. An (a; d)-H-antimagic labelling of G which admits H-covering is a bijection g : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that the H-weights wt(Hi) = P v2V (Hi) g(v) + P e2E(Hi) g(e) constitute an arithmetic progression a; a+d; a+2d; :::; a+(t????1)d where a and d are some positive integers and t is the number of subgraphs of G isomorphic to H. When g(V (G)) = f1; 2; :::; jV (G)jg, the labelling g is called super (a; d)-H-antimagic. A graph which has a super H- magic labelling and a super (a; d)-H-antimagic labelling is called super H-magic and super (a; d)-H-antimagic, respectively. Graph G1 corona graph G2, denoted by G1 G2, is a graph obtained by taking one copy of G1 which has n-vertices and n-copies of G2 and then appending edges which join every ith-vertex of G1 to every vertex in the ith-copy of G2. In this paper, we consider a complete graph Kn corona a complete graph Kn????1 for any n 3. We prove that Kn Kn????1 is super H-magic and super (a; d)-H-antimagic for some d. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Let G = (V (G);E(G)) be a graph and H be a subgraph of G. Graph G admits
H-covering, if every edge in G belongs to subgraph of G isomorphic to H.
An H-magic labelling of G which admits H-covering is a bijection f : V (G) [
E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that there is a magic constant C satisfies
wt(Hi) =
P
v2V (Hi) f(v) +
P
e2E(Hi) f(e) = C for every subgraphs Hi isomorphic
to H. When f(V (G)) = f1; 2; :::; jV (G)jg, the labelling f is called super
H-magic. An (a; d)-H-antimagic labelling of G which admits H-covering is a bijection
g : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that the H-weights
wt(Hi) =
P
v2V (Hi) g(v) +
P
e2E(Hi) g(e) constitute an arithmetic progression
a; a+d; a+2d; :::; a+(t????1)d where a and d are some positive integers and t is the
number of subgraphs of G isomorphic to H. When g(V (G)) = f1; 2; :::; jV (G)jg,
the labelling g is called super (a; d)-H-antimagic. A graph which has a super H-
magic labelling and a super (a; d)-H-antimagic labelling is called super H-magic
and super (a; d)-H-antimagic, respectively. Graph G1 corona graph G2, denoted by
G1 G2, is a graph obtained by taking one copy of G1 which has n-vertices and
n-copies of G2 and then appending edges which join every ith-vertex of G1 to every
vertex in the ith-copy of G2. In this paper, we consider a complete graph Kn corona
a complete graph Kn????1 for any n 3. We prove that Kn Kn????1 is super H-magic
and super (a; d)-H-antimagic for some d. |
format |
Final Project |
author |
NANDA MARDANI, ZAGALO |
spellingShingle |
NANDA MARDANI, ZAGALO PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1 |
author_facet |
NANDA MARDANI, ZAGALO |
author_sort |
NANDA MARDANI, ZAGALO |
title |
PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1 |
title_short |
PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1 |
title_full |
PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1 |
title_fullStr |
PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1 |
title_full_unstemmed |
PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1 |
title_sort |
pelabelan kn-ajaib super dan (a;d)-kn-antiajaib super pada graf lengkap kn korona graf lengkap kn,1 |
url |
https://digilib.itb.ac.id/gdl/view/19759 |
_version_ |
1822919642804387840 |