PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1

Let G = (V (G);E(G)) be a graph and H be a subgraph of G. Graph G admits H-covering, if every edge in G belongs to subgraph of G isomorphic to H. An H-magic labelling of G which admits H-covering is a bijection f : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that there is a magic constant C s...

Full description

Saved in:
Bibliographic Details
Main Author: NANDA MARDANI, ZAGALO
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/19759
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:19759
spelling id-itb.:197592017-09-27T11:43:12ZPELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1 NANDA MARDANI, ZAGALO Indonesia Final Project complete graph, corona operation,H-magic labelling, (a; d)-H-antimagic labelling INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/19759 Let G = (V (G);E(G)) be a graph and H be a subgraph of G. Graph G admits H-covering, if every edge in G belongs to subgraph of G isomorphic to H. An H-magic labelling of G which admits H-covering is a bijection f : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that there is a magic constant C satisfies wt(Hi) = P v2V (Hi) f(v) + P e2E(Hi) f(e) = C for every subgraphs Hi isomorphic to H. When f(V (G)) = f1; 2; :::; jV (G)jg, the labelling f is called super H-magic. An (a; d)-H-antimagic labelling of G which admits H-covering is a bijection g : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that the H-weights wt(Hi) = P v2V (Hi) g(v) + P e2E(Hi) g(e) constitute an arithmetic progression a; a+d; a+2d; :::; a+(t????1)d where a and d are some positive integers and t is the number of subgraphs of G isomorphic to H. When g(V (G)) = f1; 2; :::; jV (G)jg, the labelling g is called super (a; d)-H-antimagic. A graph which has a super H- magic labelling and a super (a; d)-H-antimagic labelling is called super H-magic and super (a; d)-H-antimagic, respectively. Graph G1 corona graph G2, denoted by G1 G2, is a graph obtained by taking one copy of G1 which has n-vertices and n-copies of G2 and then appending edges which join every ith-vertex of G1 to every vertex in the ith-copy of G2. In this paper, we consider a complete graph Kn corona a complete graph Kn????1 for any n 3. We prove that Kn Kn????1 is super H-magic and super (a; d)-H-antimagic for some d. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description Let G = (V (G);E(G)) be a graph and H be a subgraph of G. Graph G admits H-covering, if every edge in G belongs to subgraph of G isomorphic to H. An H-magic labelling of G which admits H-covering is a bijection f : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that there is a magic constant C satisfies wt(Hi) = P v2V (Hi) f(v) + P e2E(Hi) f(e) = C for every subgraphs Hi isomorphic to H. When f(V (G)) = f1; 2; :::; jV (G)jg, the labelling f is called super H-magic. An (a; d)-H-antimagic labelling of G which admits H-covering is a bijection g : V (G) [ E(G) ! f1; 2; :::; jV (G)j+jE(G)jg such that the H-weights wt(Hi) = P v2V (Hi) g(v) + P e2E(Hi) g(e) constitute an arithmetic progression a; a+d; a+2d; :::; a+(t????1)d where a and d are some positive integers and t is the number of subgraphs of G isomorphic to H. When g(V (G)) = f1; 2; :::; jV (G)jg, the labelling g is called super (a; d)-H-antimagic. A graph which has a super H- magic labelling and a super (a; d)-H-antimagic labelling is called super H-magic and super (a; d)-H-antimagic, respectively. Graph G1 corona graph G2, denoted by G1 G2, is a graph obtained by taking one copy of G1 which has n-vertices and n-copies of G2 and then appending edges which join every ith-vertex of G1 to every vertex in the ith-copy of G2. In this paper, we consider a complete graph Kn corona a complete graph Kn????1 for any n 3. We prove that Kn Kn????1 is super H-magic and super (a; d)-H-antimagic for some d.
format Final Project
author NANDA MARDANI, ZAGALO
spellingShingle NANDA MARDANI, ZAGALO
PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1
author_facet NANDA MARDANI, ZAGALO
author_sort NANDA MARDANI, ZAGALO
title PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1
title_short PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1
title_full PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1
title_fullStr PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1
title_full_unstemmed PELABELAN KN-AJAIB SUPER DAN (A;D)-KN-ANTIAJAIB SUPER PADA GRAF LENGKAP KN KORONA GRAF LENGKAP KN,1
title_sort pelabelan kn-ajaib super dan (a;d)-kn-antiajaib super pada graf lengkap kn korona graf lengkap kn,1
url https://digilib.itb.ac.id/gdl/view/19759
_version_ 1822919642804387840