#TITLE_ALTERNATIVE#
Basis Pursuit Inversion (BPI) is aim to give a better inversion result in resolving thin layers. BPI is based on sparse-layer concept , which assume that subsurface is consists of sparse layer with various depth, and every layers can be explained as sum of odd and even reflection pair with correspon...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/20049 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:20049 |
---|---|
spelling |
id-itb.:200492017-10-09T10:31:17Z#TITLE_ALTERNATIVE# MARIANA (NIM : 123 08 064), DYNA Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/20049 Basis Pursuit Inversion (BPI) is aim to give a better inversion result in resolving thin layers. BPI is based on sparse-layer concept , which assume that subsurface is consists of sparse layer with various depth, and every layers can be explained as sum of odd and even reflection pair with corresponding amplitude to the constrast impedance. In sparse layer concept, seismic trace considered as a result of convolution between wavelet and dipole reflectivities. If the right wavelet is known, the basis pursuit inversion is a process of determining the coefficient from reflectivity pairs which will reconstruct the correct seismic trace. <br /> <br /> <br /> <br /> <br /> The implementation of BPI done by build a wedge dictionary matrix that filled by some dipole reflectivity pairs with varying range of thickness from minimum sample rate to maximum tunning thickness. Convolution between matrix and a wavelet will produce an overcompleted kernel matrix that will be used as basis in reconstructing seismic trace. Problem of matrix inversion that under-determined can be solved by using basis pursuit. <br /> <br /> <br /> <br /> <br /> In this research, BPI method is applied to do the Vp/Vs ratio inversion with Extended Elastic Impedance (EEI) approach. This method gives subsurface structure detection be more detail, because the seismic data that will be inversed is a response of elastic parameter which sensitive in determining reservoir rocks. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Basis Pursuit Inversion (BPI) is aim to give a better inversion result in resolving thin layers. BPI is based on sparse-layer concept , which assume that subsurface is consists of sparse layer with various depth, and every layers can be explained as sum of odd and even reflection pair with corresponding amplitude to the constrast impedance. In sparse layer concept, seismic trace considered as a result of convolution between wavelet and dipole reflectivities. If the right wavelet is known, the basis pursuit inversion is a process of determining the coefficient from reflectivity pairs which will reconstruct the correct seismic trace. <br />
<br />
<br />
<br />
<br />
The implementation of BPI done by build a wedge dictionary matrix that filled by some dipole reflectivity pairs with varying range of thickness from minimum sample rate to maximum tunning thickness. Convolution between matrix and a wavelet will produce an overcompleted kernel matrix that will be used as basis in reconstructing seismic trace. Problem of matrix inversion that under-determined can be solved by using basis pursuit. <br />
<br />
<br />
<br />
<br />
In this research, BPI method is applied to do the Vp/Vs ratio inversion with Extended Elastic Impedance (EEI) approach. This method gives subsurface structure detection be more detail, because the seismic data that will be inversed is a response of elastic parameter which sensitive in determining reservoir rocks. |
format |
Final Project |
author |
MARIANA (NIM : 123 08 064), DYNA |
spellingShingle |
MARIANA (NIM : 123 08 064), DYNA #TITLE_ALTERNATIVE# |
author_facet |
MARIANA (NIM : 123 08 064), DYNA |
author_sort |
MARIANA (NIM : 123 08 064), DYNA |
title |
#TITLE_ALTERNATIVE# |
title_short |
#TITLE_ALTERNATIVE# |
title_full |
#TITLE_ALTERNATIVE# |
title_fullStr |
#TITLE_ALTERNATIVE# |
title_full_unstemmed |
#TITLE_ALTERNATIVE# |
title_sort |
#title_alternative# |
url |
https://digilib.itb.ac.id/gdl/view/20049 |
_version_ |
1821120030365974528 |