CONSTRUCTION OF CODES OVER FINITE GROUPS

When constructing group block codes, there are two things to note. The first is indecomposablecode. Thesecondisaparitycheckmatrix. Asaresult,determining the minimum Hamming distance of group block codes become easy.

Saved in:
Bibliographic Details
Main Author: (NIM : 10110081), Fudrin
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/20119
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:20119
spelling id-itb.:201192017-09-27T11:43:13ZCONSTRUCTION OF CODES OVER FINITE GROUPS (NIM : 10110081), Fudrin Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/20119 When constructing group block codes, there are two things to note. The first is indecomposablecode. Thesecondisaparitycheckmatrix. Asaresult,determining the minimum Hamming distance of group block codes become easy. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description When constructing group block codes, there are two things to note. The first is indecomposablecode. Thesecondisaparitycheckmatrix. Asaresult,determining the minimum Hamming distance of group block codes become easy.
format Final Project
author (NIM : 10110081), Fudrin
spellingShingle (NIM : 10110081), Fudrin
CONSTRUCTION OF CODES OVER FINITE GROUPS
author_facet (NIM : 10110081), Fudrin
author_sort (NIM : 10110081), Fudrin
title CONSTRUCTION OF CODES OVER FINITE GROUPS
title_short CONSTRUCTION OF CODES OVER FINITE GROUPS
title_full CONSTRUCTION OF CODES OVER FINITE GROUPS
title_fullStr CONSTRUCTION OF CODES OVER FINITE GROUPS
title_full_unstemmed CONSTRUCTION OF CODES OVER FINITE GROUPS
title_sort construction of codes over finite groups
url https://digilib.itb.ac.id/gdl/view/20119
_version_ 1821120053454569472