#TITLE_ALTERNATIVE#

MOF is a material consisting of metals or metal clusters bind with organic linkers to form a three-dimensional frameworks. In this research, had been synthesized UiO-67 MOF or Zr-BPDC (Zirconium-Biphenyl,4,4-dicarboxylate) MOF. UiO-67 MOF was synthesized by using solvothermal method. UiO-67 MOF were...

Full description

Saved in:
Bibliographic Details
Main Author: CAHYA ALAM ( NIM : 10510053 ), FIRDHA
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/22173
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:22173
spelling id-itb.:221732017-09-27T11:42:39Z#TITLE_ALTERNATIVE# CAHYA ALAM ( NIM : 10510053 ), FIRDHA Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/22173 MOF is a material consisting of metals or metal clusters bind with organic linkers to form a three-dimensional frameworks. In this research, had been synthesized UiO-67 MOF or Zr-BPDC (Zirconium-Biphenyl,4,4-dicarboxylate) MOF. UiO-67 MOF was synthesized by using solvothermal method. UiO-67 MOF were characterized by PXRD (Powder X-Ray Diffraction) to determine the structure of UiO-67 MOF, TGA (Thermo Gravimetric Analysis) was carried out know the decomposition temperature of UiO-67 MOF; N2 physisorption with BET (Brunauer-Emmet-Teller) method was conducted to have information about surface area and pores size; and conductivity test was applied to measure the conductivity properties of UiO-67 MOF. UiO-67 MOF had been successfully synthesized with typical peaks of UiO-67 in the PXRD diffractogram at 2θ is equal to 6 °, 12 °, 20 ° and have 98.5% of crystallinity. UiO-67 MOF showed good thermal stability with organic decomposition occured at range of temperature about 445 – 600 °C. UiO-67 MOF has surface area about 163 m2/g with 2.004 nm of pore size. Conductivity measurements of UiO-67 was applied by using DC current 4-probe method. At 20 Hz of frequency, the measured conductivity for UiO-67 MOF as synthesized was 1,7 x 10-7 S/cm, and for Cr2O3@UiO-67 and Cr3+@UiO-67 were 5.39 x 10-5 S/cm and 6.16 x 10-7 S/cm, respectively. This suggests the addition of chromium oxide allows the electron hopping mechanism, while in Cr3+@UiO-67, the main structure of MOF was decomposed, hence the Cr3+ addition has no significant effect. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description MOF is a material consisting of metals or metal clusters bind with organic linkers to form a three-dimensional frameworks. In this research, had been synthesized UiO-67 MOF or Zr-BPDC (Zirconium-Biphenyl,4,4-dicarboxylate) MOF. UiO-67 MOF was synthesized by using solvothermal method. UiO-67 MOF were characterized by PXRD (Powder X-Ray Diffraction) to determine the structure of UiO-67 MOF, TGA (Thermo Gravimetric Analysis) was carried out know the decomposition temperature of UiO-67 MOF; N2 physisorption with BET (Brunauer-Emmet-Teller) method was conducted to have information about surface area and pores size; and conductivity test was applied to measure the conductivity properties of UiO-67 MOF. UiO-67 MOF had been successfully synthesized with typical peaks of UiO-67 in the PXRD diffractogram at 2θ is equal to 6 °, 12 °, 20 ° and have 98.5% of crystallinity. UiO-67 MOF showed good thermal stability with organic decomposition occured at range of temperature about 445 – 600 °C. UiO-67 MOF has surface area about 163 m2/g with 2.004 nm of pore size. Conductivity measurements of UiO-67 was applied by using DC current 4-probe method. At 20 Hz of frequency, the measured conductivity for UiO-67 MOF as synthesized was 1,7 x 10-7 S/cm, and for Cr2O3@UiO-67 and Cr3+@UiO-67 were 5.39 x 10-5 S/cm and 6.16 x 10-7 S/cm, respectively. This suggests the addition of chromium oxide allows the electron hopping mechanism, while in Cr3+@UiO-67, the main structure of MOF was decomposed, hence the Cr3+ addition has no significant effect.
format Final Project
author CAHYA ALAM ( NIM : 10510053 ), FIRDHA
spellingShingle CAHYA ALAM ( NIM : 10510053 ), FIRDHA
#TITLE_ALTERNATIVE#
author_facet CAHYA ALAM ( NIM : 10510053 ), FIRDHA
author_sort CAHYA ALAM ( NIM : 10510053 ), FIRDHA
title #TITLE_ALTERNATIVE#
title_short #TITLE_ALTERNATIVE#
title_full #TITLE_ALTERNATIVE#
title_fullStr #TITLE_ALTERNATIVE#
title_full_unstemmed #TITLE_ALTERNATIVE#
title_sort #title_alternative#
url https://digilib.itb.ac.id/gdl/view/22173
_version_ 1821120690445615104