PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION

Modeling and simulation of a biological phenomenon may involve a system <br /> <br /> <br /> of differential equations which describes the interactions between its biological <br /> <br /> <br /> components. Biological models usually depend on several paramete...

Full description

Saved in:
Bibliographic Details
Main Author: MICHELLA (NIM: 10113049), LEVINA
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/22890
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:22890
spelling id-itb.:228902017-09-27T11:43:15ZPARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION MICHELLA (NIM: 10113049), LEVINA Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/22890 Modeling and simulation of a biological phenomenon may involve a system <br /> <br /> <br /> of differential equations which describes the interactions between its biological <br /> <br /> <br /> components. Biological models usually depend on several parameters and initial <br /> <br /> <br /> conditions. Improper parameter values will cause misleading result in simulation. <br /> <br /> <br /> This can be prevented by estimating the unknown parameter values by fitting the <br /> <br /> <br /> model to experimental data. Parameter estimation relates to minimizing an objective <br /> <br /> <br /> function which evaluates the difference between model prediction and experimental <br /> <br /> <br /> data. Generally, the biological model involves the system of nonlinear differential <br /> <br /> <br /> equation. Parameter estimation problem will be brought to a nonlinear optimization <br /> <br /> <br /> problem. Therefore, the problem of parameter estimation will be solved numerically. <br /> <br /> <br /> In this thesis, parameter estimation for the biological model will be solved <br /> <br /> <br /> numerically with Spiral Dynamics optimization. In addition to Spiral Dynamics, <br /> <br /> <br /> Nonlinear Least Square and Genetic Algorithm method will be used to estimate the <br /> <br /> <br /> parameters of the biological model as a comparison. In terms of computing, Spiral <br /> <br /> <br /> Dynamics produces pretty good parameters with the fastest computation time. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description Modeling and simulation of a biological phenomenon may involve a system <br /> <br /> <br /> of differential equations which describes the interactions between its biological <br /> <br /> <br /> components. Biological models usually depend on several parameters and initial <br /> <br /> <br /> conditions. Improper parameter values will cause misleading result in simulation. <br /> <br /> <br /> This can be prevented by estimating the unknown parameter values by fitting the <br /> <br /> <br /> model to experimental data. Parameter estimation relates to minimizing an objective <br /> <br /> <br /> function which evaluates the difference between model prediction and experimental <br /> <br /> <br /> data. Generally, the biological model involves the system of nonlinear differential <br /> <br /> <br /> equation. Parameter estimation problem will be brought to a nonlinear optimization <br /> <br /> <br /> problem. Therefore, the problem of parameter estimation will be solved numerically. <br /> <br /> <br /> In this thesis, parameter estimation for the biological model will be solved <br /> <br /> <br /> numerically with Spiral Dynamics optimization. In addition to Spiral Dynamics, <br /> <br /> <br /> Nonlinear Least Square and Genetic Algorithm method will be used to estimate the <br /> <br /> <br /> parameters of the biological model as a comparison. In terms of computing, Spiral <br /> <br /> <br /> Dynamics produces pretty good parameters with the fastest computation time.
format Final Project
author MICHELLA (NIM: 10113049), LEVINA
spellingShingle MICHELLA (NIM: 10113049), LEVINA
PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION
author_facet MICHELLA (NIM: 10113049), LEVINA
author_sort MICHELLA (NIM: 10113049), LEVINA
title PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION
title_short PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION
title_full PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION
title_fullStr PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION
title_full_unstemmed PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION
title_sort parameter estimation for biological model with spiral dynamics optimization
url https://digilib.itb.ac.id/gdl/view/22890
_version_ 1822019930025885696