PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION
Modeling and simulation of a biological phenomenon may involve a system <br /> <br /> <br /> of differential equations which describes the interactions between its biological <br /> <br /> <br /> components. Biological models usually depend on several paramete...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/22890 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:22890 |
---|---|
spelling |
id-itb.:228902017-09-27T11:43:15ZPARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION MICHELLA (NIM: 10113049), LEVINA Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/22890 Modeling and simulation of a biological phenomenon may involve a system <br /> <br /> <br /> of differential equations which describes the interactions between its biological <br /> <br /> <br /> components. Biological models usually depend on several parameters and initial <br /> <br /> <br /> conditions. Improper parameter values will cause misleading result in simulation. <br /> <br /> <br /> This can be prevented by estimating the unknown parameter values by fitting the <br /> <br /> <br /> model to experimental data. Parameter estimation relates to minimizing an objective <br /> <br /> <br /> function which evaluates the difference between model prediction and experimental <br /> <br /> <br /> data. Generally, the biological model involves the system of nonlinear differential <br /> <br /> <br /> equation. Parameter estimation problem will be brought to a nonlinear optimization <br /> <br /> <br /> problem. Therefore, the problem of parameter estimation will be solved numerically. <br /> <br /> <br /> In this thesis, parameter estimation for the biological model will be solved <br /> <br /> <br /> numerically with Spiral Dynamics optimization. In addition to Spiral Dynamics, <br /> <br /> <br /> Nonlinear Least Square and Genetic Algorithm method will be used to estimate the <br /> <br /> <br /> parameters of the biological model as a comparison. In terms of computing, Spiral <br /> <br /> <br /> Dynamics produces pretty good parameters with the fastest computation time. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Modeling and simulation of a biological phenomenon may involve a system <br />
<br />
<br />
of differential equations which describes the interactions between its biological <br />
<br />
<br />
components. Biological models usually depend on several parameters and initial <br />
<br />
<br />
conditions. Improper parameter values will cause misleading result in simulation. <br />
<br />
<br />
This can be prevented by estimating the unknown parameter values by fitting the <br />
<br />
<br />
model to experimental data. Parameter estimation relates to minimizing an objective <br />
<br />
<br />
function which evaluates the difference between model prediction and experimental <br />
<br />
<br />
data. Generally, the biological model involves the system of nonlinear differential <br />
<br />
<br />
equation. Parameter estimation problem will be brought to a nonlinear optimization <br />
<br />
<br />
problem. Therefore, the problem of parameter estimation will be solved numerically. <br />
<br />
<br />
In this thesis, parameter estimation for the biological model will be solved <br />
<br />
<br />
numerically with Spiral Dynamics optimization. In addition to Spiral Dynamics, <br />
<br />
<br />
Nonlinear Least Square and Genetic Algorithm method will be used to estimate the <br />
<br />
<br />
parameters of the biological model as a comparison. In terms of computing, Spiral <br />
<br />
<br />
Dynamics produces pretty good parameters with the fastest computation time. |
format |
Final Project |
author |
MICHELLA (NIM: 10113049), LEVINA |
spellingShingle |
MICHELLA (NIM: 10113049), LEVINA PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION |
author_facet |
MICHELLA (NIM: 10113049), LEVINA |
author_sort |
MICHELLA (NIM: 10113049), LEVINA |
title |
PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION |
title_short |
PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION |
title_full |
PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION |
title_fullStr |
PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION |
title_full_unstemmed |
PARAMETER ESTIMATION FOR BIOLOGICAL MODEL WITH SPIRAL DYNAMICS OPTIMIZATION |
title_sort |
parameter estimation for biological model with spiral dynamics optimization |
url |
https://digilib.itb.ac.id/gdl/view/22890 |
_version_ |
1822019930025885696 |