INFORMATION EXTRACTION OF TRAFFIC CONDITION FROM SOCIAL MEDIA USING BIDIRECTIONAL LSTM-CNN
Today's social media, especially the Twitter platform has become the most popular information source to find out the traffic conditions in real-time. Generally the use of information posted on Twitter is used for short-term purposes, only to find out the congestion points during the event. If t...
محفوظ في:
المؤلف الرئيسي: | RIZA ALIFI - NIM: 23515021 , M. |
---|---|
التنسيق: | Theses |
اللغة: | Indonesia |
الوصول للمادة أونلاين: | https://digilib.itb.ac.id/gdl/view/29049 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
TOKEN CLASSIFICATION ON INDONESIAN ARTICLE FOR 5W1H EVENT EXTRACTION WITH CNN-BIDIRECTIONAL LSTM
بواسطة: NURDIN (NIM : 23515035), ARLIYANTI -
Real-time facial emotion recognition with LSTM-CNN
بواسطة: Lim, Varick Sheng Rui
منشور في: (2019) -
Deep CNN-LSTM supervised model and CNN self-supervised model for human activity recognition
بواسطة: Liao, Zixin
منشور في: (2023) -
Densely connected bidirectional LSTM with applications to sentence classification
بواسطة: DING, Zixiang, وآخرون
منشور في: (2018) -
Transient Stability Detection Using CNN-LSTM Considering Time Frame of Observation
بواسطة: Azhar, I.F., وآخرون
منشور في: (2021)