PENDEKATAN PROBABILITAS KETAKSAMAAN HARNACK DALAM KONTEKS GRAF
In this study we introduce a probabilistic approach to prove the following Harnack inequality in the context of graphs, max B u C min B u; where B is a ball in the context of graph, C is a constant and u is a solution Lu(x) = 0 where Lu(x) := X yx p(x; y) (u(x) ???? u(y)) : This approa...
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Subjects: | |
Online Access: | https://digilib.itb.ac.id/gdl/view/33872 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:33872 |
---|---|
spelling |
id-itb.:338722019-01-30T15:20:12ZPENDEKATAN PROBABILITAS KETAKSAMAAN HARNACK DALAM KONTEKS GRAF Rika Ayu Febrilia, Baiq Matematika Indonesia Theses Harnack inequality, graphs, critical density property, doubling property. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/33872 In this study we introduce a probabilistic approach to prove the following Harnack inequality in the context of graphs, max B u C min B u; where B is a ball in the context of graph, C is a constant and u is a solution Lu(x) = 0 where Lu(x) := X yx p(x; y) (u(x) ???? u(y)) : This approach is based on a critical density property and doubling property. With this new approach, Harnack inequality can be obtained without using John-Nirenberg inequality and covering lemmas. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
topic |
Matematika |
spellingShingle |
Matematika Rika Ayu Febrilia, Baiq PENDEKATAN PROBABILITAS KETAKSAMAAN HARNACK DALAM KONTEKS GRAF |
description |
In this study we introduce a probabilistic approach to prove the following Harnack inequality
in the context of graphs,
max
B
u C min
B
u;
where B is a ball in the context of graph, C is a constant and u is a solution Lu(x) = 0
where
Lu(x) :=
X
yx
p(x; y) (u(x) ???? u(y)) :
This approach is based on a critical density property and doubling property. With
this new approach, Harnack inequality can be obtained without using John-Nirenberg
inequality and covering lemmas. |
format |
Theses |
author |
Rika Ayu Febrilia, Baiq |
author_facet |
Rika Ayu Febrilia, Baiq |
author_sort |
Rika Ayu Febrilia, Baiq |
title |
PENDEKATAN PROBABILITAS KETAKSAMAAN HARNACK DALAM KONTEKS GRAF |
title_short |
PENDEKATAN PROBABILITAS KETAKSAMAAN HARNACK DALAM KONTEKS GRAF |
title_full |
PENDEKATAN PROBABILITAS KETAKSAMAAN HARNACK DALAM KONTEKS GRAF |
title_fullStr |
PENDEKATAN PROBABILITAS KETAKSAMAAN HARNACK DALAM KONTEKS GRAF |
title_full_unstemmed |
PENDEKATAN PROBABILITAS KETAKSAMAAN HARNACK DALAM KONTEKS GRAF |
title_sort |
pendekatan probabilitas ketaksamaan harnack dalam konteks graf |
url |
https://digilib.itb.ac.id/gdl/view/33872 |
_version_ |
1822268230556712960 |