PERRON-FROBENIUS THEORY AND GRAPH
Perron-Frobenius theory is nonnegative matrices basic theorem that discuss eigenvalue and eigenvector properties from a matrix based on irreducible properties. A graph ???? = (V;E) is a system consists of nite non-empty set V , and set E of unordered pairs fu; vg, u; v 2 V and u 6= v. Eigenvalue...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
التنسيق: | Theses |
اللغة: | Indonesia |
الموضوعات: | |
الوصول للمادة أونلاين: | https://digilib.itb.ac.id/gdl/view/33936 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Institut Teknologi Bandung |
اللغة: | Indonesia |
الملخص: | Perron-Frobenius theory is nonnegative matrices basic theorem that discuss eigenvalue
and eigenvector properties from a matrix based on irreducible properties. A graph ???? =
(V;E) is a system consists of nite non-empty set V , and set E of unordered pairs fu; vg,
u; v 2 V and u 6= v. Eigenvalue of ???? can be determined from adjacency matrices, is matrix
with entry (0; 1) that represents vertices adjacency of ????. The purpose of this project
is to investigate the properties of the greatest eigenvalue of a graph, specically strongly
connected graph that relate with Perron-Frobenius theory, and to investigate the properties
of the greatest eigenvalue of regular connected graph. |
---|