VOLATILITY CHANGES THROUGH MARKOV SWITCHING ARCH MODEL FOR VALUE-AT-RISK PREDICTION
Markov Swithcing Autoregressive Conditional Heteroscedastic (MSARCH) model provides a description of return uctuation for low and high volatilities. Return behavior with volatility changes is interesting topic, in particular for Value-at-Risk (VaR) prediction. In this thesis, we employ a Markov...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
التنسيق: | Theses |
اللغة: | Indonesia |
الموضوعات: | |
الوصول للمادة أونلاين: | https://digilib.itb.ac.id/gdl/view/33940 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Institut Teknologi Bandung |
اللغة: | Indonesia |
الملخص: | Markov Swithcing Autoregressive Conditional Heteroscedastic (MSARCH) model
provides a description of return
uctuation for low and high volatilities. Return
behavior with volatility changes is interesting topic, in particular for Value-at-Risk
(VaR) prediction. In this thesis, we employ a Markov chain to compute the transition
probability of volatility changes. Then, a volatility model MSARCH of order (p,1) is
used to predict risk measure. Simulation results show that MSARCH(1,1) dominates
in calculating VaR prediction. |
---|