VOLATILITY CHANGES THROUGH MARKOV SWITCHING ARCH MODEL FOR VALUE-AT-RISK PREDICTION

Markov Swithcing Autoregressive Conditional Heteroscedastic (MSARCH) model provides a description of return uctuation for low and high volatilities. Return behavior with volatility changes is interesting topic, in particular for Value-at-Risk (VaR) prediction. In this thesis, we employ a Markov...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Nugroho, Setyo
التنسيق: Theses
اللغة:Indonesia
الموضوعات:
الوصول للمادة أونلاين:https://digilib.itb.ac.id/gdl/view/33940
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Institut Teknologi Bandung
اللغة: Indonesia
الوصف
الملخص:Markov Swithcing Autoregressive Conditional Heteroscedastic (MSARCH) model provides a description of return uctuation for low and high volatilities. Return behavior with volatility changes is interesting topic, in particular for Value-at-Risk (VaR) prediction. In this thesis, we employ a Markov chain to compute the transition probability of volatility changes. Then, a volatility model MSARCH of order (p,1) is used to predict risk measure. Simulation results show that MSARCH(1,1) dominates in calculating VaR prediction.