CONSTRUCTION OF CODES OVER FINITE GROUPS

When constructing group block codes, there are two things to note. The first is indecomposable code. The second is a parity check matrix. As a result, determining the minimum Hamming distance of group block codes become easy.

Saved in:
Bibliographic Details
Main Author: Fudrin
Format: Final Project
Language:Indonesia
Subjects:
Online Access:https://digilib.itb.ac.id/gdl/view/34038
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:34038
spelling id-itb.:340382019-02-01T15:15:38ZCONSTRUCTION OF CODES OVER FINITE GROUPS Fudrin Matematika Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/34038 When constructing group block codes, there are two things to note. The first is indecomposable code. The second is a parity check matrix. As a result, determining the minimum Hamming distance of group block codes become easy. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
topic Matematika
spellingShingle Matematika
Fudrin
CONSTRUCTION OF CODES OVER FINITE GROUPS
description When constructing group block codes, there are two things to note. The first is indecomposable code. The second is a parity check matrix. As a result, determining the minimum Hamming distance of group block codes become easy.
format Final Project
author Fudrin
author_facet Fudrin
author_sort Fudrin
title CONSTRUCTION OF CODES OVER FINITE GROUPS
title_short CONSTRUCTION OF CODES OVER FINITE GROUPS
title_full CONSTRUCTION OF CODES OVER FINITE GROUPS
title_fullStr CONSTRUCTION OF CODES OVER FINITE GROUPS
title_full_unstemmed CONSTRUCTION OF CODES OVER FINITE GROUPS
title_sort construction of codes over finite groups
url https://digilib.itb.ac.id/gdl/view/34038
_version_ 1821996658362155008