L(3,2,1) LABELLINGS OF SOME TREE GRAPH CLASSES
Let G = (V;E) be a graph. An L(3,2,1) labelling of G is a function f : V ! N [ f0g such that for every u; v 2 V , jf(u) ???? f(v)j 3 if d(u; v) = 1, jf(u)????f(v)j 2 if d(u; v) = 2, and jf(u)????f(v)j 1 if d(u; v) = 3. Let k 2 N, a k ????L(3; 2; 1) labelling is a labelling L(3,2,1) where all l...
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/36113 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:36113 |
---|---|
spelling |
id-itb.:361132019-03-08T09:56:17ZL(3,2,1) LABELLINGS OF SOME TREE GRAPH CLASSES Sarbaini Indonesia Theses L(3,2,1) number, banana graph, recracker graph, kalpataru graph. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/36113 Let G = (V;E) be a graph. An L(3,2,1) labelling of G is a function f : V ! N [ f0g such that for every u; v 2 V , jf(u) ???? f(v)j 3 if d(u; v) = 1, jf(u)????f(v)j 2 if d(u; v) = 2, and jf(u)????f(v)j 1 if d(u; v) = 3. Let k 2 N, a k ????L(3; 2; 1) labelling is a labelling L(3,2,1) where all labels are not greater than k. An L(3,2,1) number of G, denoted by 3;2;1(G), is the smallest non negative integer k such that G has a k ???? L(3,2,1) labelling. In this thesis, we determine 3;2;1 of recracker graphs, banana graphs, and kalpataru graphs. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Let G = (V;E) be a graph. An L(3,2,1) labelling of G is a function f :
V ! N [ f0g such that for every u; v 2 V , jf(u) ???? f(v)j 3 if d(u; v) = 1,
jf(u)????f(v)j 2 if d(u; v) = 2, and jf(u)????f(v)j 1 if d(u; v) = 3. Let k 2 N,
a k ????L(3; 2; 1) labelling is a labelling L(3,2,1) where all labels are not greater
than k. An L(3,2,1) number of G, denoted by 3;2;1(G), is the smallest non
negative integer k such that G has a k ???? L(3,2,1) labelling. In this thesis, we
determine 3;2;1 of recracker graphs, banana graphs, and kalpataru graphs. |
format |
Theses |
author |
Sarbaini |
spellingShingle |
Sarbaini L(3,2,1) LABELLINGS OF SOME TREE GRAPH CLASSES |
author_facet |
Sarbaini |
author_sort |
Sarbaini |
title |
L(3,2,1) LABELLINGS OF SOME TREE GRAPH CLASSES |
title_short |
L(3,2,1) LABELLINGS OF SOME TREE GRAPH CLASSES |
title_full |
L(3,2,1) LABELLINGS OF SOME TREE GRAPH CLASSES |
title_fullStr |
L(3,2,1) LABELLINGS OF SOME TREE GRAPH CLASSES |
title_full_unstemmed |
L(3,2,1) LABELLINGS OF SOME TREE GRAPH CLASSES |
title_sort |
l(3,2,1) labellings of some tree graph classes |
url |
https://digilib.itb.ac.id/gdl/view/36113 |
_version_ |
1822924561900896256 |