WAVE GROUP DALAM PERSAMAAN KDV
<b>Abstrak</b><p align=\"justify\"> <br /> In this paper, KdV-equation as a model equation for surface waves is considered. In particular, solutions of the form of wave groups will be investigated. First and second order contributions (in a small parameter that cha...
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/4563 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:4563 |
---|---|
spelling |
id-itb.:45632006-03-23T13:01:50ZWAVE GROUP DALAM PERSAMAAN KDV Yodi GUnawan , Agus Indonesia Theses INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/4563 <b>Abstrak</b><p align=\"justify\"> <br /> In this paper, KdV-equation as a model equation for surface waves is considered. In particular, solutions of the form of wave groups will be investigated. First and second order contributions (in a small parameter that characterizes the amplitude) are calculated. The amplitude is shown to be a Nonlinear Schrodinger Equation (NLS) for normal dispersion, implying that no exponentially confined wave groups are found for KdV. A numerical scheme for the amplitude equation based on Fourier truncation is discussed. Consistent discretization via Hamiltonian structure is resulted to produce the discretized equations. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
<b>Abstrak</b><p align=\"justify\"> <br />
In this paper, KdV-equation as a model equation for surface waves is considered. In particular, solutions of the form of wave groups will be investigated. First and second order contributions (in a small parameter that characterizes the amplitude) are calculated. The amplitude is shown to be a Nonlinear Schrodinger Equation (NLS) for normal dispersion, implying that no exponentially confined wave groups are found for KdV. A numerical scheme for the amplitude equation based on Fourier truncation is discussed. Consistent discretization via Hamiltonian structure is resulted to produce the discretized equations. |
format |
Theses |
author |
Yodi GUnawan , Agus |
spellingShingle |
Yodi GUnawan , Agus WAVE GROUP DALAM PERSAMAAN KDV |
author_facet |
Yodi GUnawan , Agus |
author_sort |
Yodi GUnawan , Agus |
title |
WAVE GROUP DALAM PERSAMAAN KDV |
title_short |
WAVE GROUP DALAM PERSAMAAN KDV |
title_full |
WAVE GROUP DALAM PERSAMAAN KDV |
title_fullStr |
WAVE GROUP DALAM PERSAMAAN KDV |
title_full_unstemmed |
WAVE GROUP DALAM PERSAMAAN KDV |
title_sort |
wave group dalam persamaan kdv |
url |
https://digilib.itb.ac.id/gdl/view/4563 |
_version_ |
1820663431895711744 |