WAVE GROUP DALAM PERSAMAAN KDV

<b>Abstrak</b><p align=\"justify\"> <br /> In this paper, KdV-equation as a model equation for surface waves is considered. In particular, solutions of the form of wave groups will be investigated. First and second order contributions (in a small parameter that cha...

Full description

Saved in:
Bibliographic Details
Main Author: Yodi GUnawan , Agus
Format: Theses
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/4563
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:4563
spelling id-itb.:45632006-03-23T13:01:50ZWAVE GROUP DALAM PERSAMAAN KDV Yodi GUnawan , Agus Indonesia Theses INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/4563 <b>Abstrak</b><p align=\"justify\"> <br /> In this paper, KdV-equation as a model equation for surface waves is considered. In particular, solutions of the form of wave groups will be investigated. First and second order contributions (in a small parameter that characterizes the amplitude) are calculated. The amplitude is shown to be a Nonlinear Schrodinger Equation (NLS) for normal dispersion, implying that no exponentially confined wave groups are found for KdV. A numerical scheme for the amplitude equation based on Fourier truncation is discussed. Consistent discretization via Hamiltonian structure is resulted to produce the discretized equations. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description <b>Abstrak</b><p align=\"justify\"> <br /> In this paper, KdV-equation as a model equation for surface waves is considered. In particular, solutions of the form of wave groups will be investigated. First and second order contributions (in a small parameter that characterizes the amplitude) are calculated. The amplitude is shown to be a Nonlinear Schrodinger Equation (NLS) for normal dispersion, implying that no exponentially confined wave groups are found for KdV. A numerical scheme for the amplitude equation based on Fourier truncation is discussed. Consistent discretization via Hamiltonian structure is resulted to produce the discretized equations.
format Theses
author Yodi GUnawan , Agus
spellingShingle Yodi GUnawan , Agus
WAVE GROUP DALAM PERSAMAAN KDV
author_facet Yodi GUnawan , Agus
author_sort Yodi GUnawan , Agus
title WAVE GROUP DALAM PERSAMAAN KDV
title_short WAVE GROUP DALAM PERSAMAAN KDV
title_full WAVE GROUP DALAM PERSAMAAN KDV
title_fullStr WAVE GROUP DALAM PERSAMAAN KDV
title_full_unstemmed WAVE GROUP DALAM PERSAMAAN KDV
title_sort wave group dalam persamaan kdv
url https://digilib.itb.ac.id/gdl/view/4563
_version_ 1820663431895711744