MENGUJI KEBERADAAN INTERMEDIATE-MASS BLACK HOLE PADA ESO 243-49 HLX-1 MENGGUNAKAN MODEL STANDAR PIRINGAN AKRESI YANG DITERAPKAN PADA DATA SWIFT/XRT
Hyperluminous X-ray Source (HLX) is a non-nuclear extragalactic X-ray source which appears to a point-like source in X-ray image and generates X-ray luminosity Lx 1041 erg/s. In order to explain the very high luminosity of a point-like source, the scenario of accretion process involving compact...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/47970 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
Summary: | Hyperluminous X-ray Source (HLX) is a non-nuclear extragalactic X-ray source
which appears to a point-like source in X-ray image and generates X-ray luminosity
Lx 1041 erg/s. In order to explain the very high luminosity of a point-like source,
the scenario of accretion process involving compact object is needed. If the observed
luminosity of HLX does not exceed the Eddington luminosity, it is required the
presence of a 1000 M compact object. Hence, HLX currently provides the
strongest candidate for the existence of intermediate-mass black hole. One of the
HLXs that has been well studied is ESO 243-49 HLX-1.
This study describes the X-ray spectral variability of ESO 243-49 HLX-1. The
data were taken from Swift observations in 2008 to 2020. Due to the short duration
of Swift observations (around thousands of second), the spectra were merged. The
analysis of X-ray spectrum using several simple models shows that all spectra are
dominated by thermal component in which the disk luminosity appears to scale with
the fourth power of the inner disk temperature. Continuum tting method which
requires thermal spectrum, has been implemented to estimate the black hole mass in
ESO 243-49 HLX-1. In this work, the mass of the black hole of (6; 383; 86)103 M
to (3; 11 4; 03) 106 M can be derived. This value is lied in the range of mass
for intermediate-mass black hole. Besides, the study of spectral evolution found
several similar behaviours between ESO 243-49 HLX-1 and Galactic black hole binaries,
particularly sub-Eddington sources. Thus, this result suggests the presence
of intermediate-mass black hole in ESO 243-49 HLX-1.
|
---|