COMPUTATIONAL FLUID DYNAMIC SOLVER FOR WAVE PROPAGATION USING FINITE VOLUME ON A STAGGERED GRID

Computational Fluid Dynamics is one of the Mathematics Branch that explains the motions of continuous fluids through computer simulations. Mathematically, Fluid Dynamics can be formulated with Navier-Stokes Equation. This thesis research will be using another approach to simulate Fluid Dynamics p...

Full description

Saved in:
Bibliographic Details
Main Author: Maulana Akbar, Salsabil
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/49391
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
Description
Summary:Computational Fluid Dynamics is one of the Mathematics Branch that explains the motions of continuous fluids through computer simulations. Mathematically, Fluid Dynamics can be formulated with Navier-Stokes Equation. This thesis research will be using another approach to simulate Fluid Dynamics phenomenon numerically using Shallow Water Equation, which is the simplification of Navier-Stokes Equation, with assumptions that the phenomenon occurs on fluids that satisfy shallow water characteristics. On this thesis book, the methods to simulate the will be explained thoroughly and step-by-step, using Finite Volume Method on a Staggered Grid. This thesis also introduces numerical simulation from the simplest case, and will be extended into more sophisticated case. This thesis book also discuss the alternative approach to simulate fluids that does not satisfy shallow water characteristics or does not follow Hydrostatic pressure condition, by introducing pressure factor as a function of position and time. Several phenomena will be used in order to verify simulation results that was built from numerical scheme based on either analytical solution or experimental data. In addition, these numerical scheme will be implemented on MATLAB and Python, in order to compare their efficiency in terms of its elapsed runtime.