PREDIKSI KETERLAMBATAN KEDATANGAN PENERBANGAN DENGAN METODE MACHINE LEARNING

Flight Delay is a problem in Indonesia's growing aviation industry. The delay causes unscheduled traffic congestion and lowers the level of service in the air traffic controller. This study aims to create a flight prediction model using machine learning. The method in this study is a compari...

Full description

Saved in:
Bibliographic Details
Main Author: Rizki Oktafianto, Muhammad
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/50685
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:50685
spelling id-itb.:506852020-09-24T23:15:40ZPREDIKSI KETERLAMBATAN KEDATANGAN PENERBANGAN DENGAN METODE MACHINE LEARNING Rizki Oktafianto, Muhammad Indonesia Final Project Flight delay, prediction model, machine learning, interpretable model, feature importance INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/50685 Flight Delay is a problem in Indonesia's growing aviation industry. The delay causes unscheduled traffic congestion and lowers the level of service in the air traffic controller. This study aims to create a flight prediction model using machine learning. The method in this study is a comparison of the implementation of 11 machine learning algorithms on flight data to Bandung to obtain prediction results for delays and model analysis using Local Interpretable Model-Agnostic Explanations (LIME). The best results from modeling with machine learning show the achievement level of the accuracy value of 91,5% and the AUC value on the ROC graph of 0,966 on the bagging classifier model with decision trees basis. Analysis of feature importance shows that the most significant factor is traffic at origin airport. The results of this study can be used to create a flight delay prediction system. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description Flight Delay is a problem in Indonesia's growing aviation industry. The delay causes unscheduled traffic congestion and lowers the level of service in the air traffic controller. This study aims to create a flight prediction model using machine learning. The method in this study is a comparison of the implementation of 11 machine learning algorithms on flight data to Bandung to obtain prediction results for delays and model analysis using Local Interpretable Model-Agnostic Explanations (LIME). The best results from modeling with machine learning show the achievement level of the accuracy value of 91,5% and the AUC value on the ROC graph of 0,966 on the bagging classifier model with decision trees basis. Analysis of feature importance shows that the most significant factor is traffic at origin airport. The results of this study can be used to create a flight delay prediction system.
format Final Project
author Rizki Oktafianto, Muhammad
spellingShingle Rizki Oktafianto, Muhammad
PREDIKSI KETERLAMBATAN KEDATANGAN PENERBANGAN DENGAN METODE MACHINE LEARNING
author_facet Rizki Oktafianto, Muhammad
author_sort Rizki Oktafianto, Muhammad
title PREDIKSI KETERLAMBATAN KEDATANGAN PENERBANGAN DENGAN METODE MACHINE LEARNING
title_short PREDIKSI KETERLAMBATAN KEDATANGAN PENERBANGAN DENGAN METODE MACHINE LEARNING
title_full PREDIKSI KETERLAMBATAN KEDATANGAN PENERBANGAN DENGAN METODE MACHINE LEARNING
title_fullStr PREDIKSI KETERLAMBATAN KEDATANGAN PENERBANGAN DENGAN METODE MACHINE LEARNING
title_full_unstemmed PREDIKSI KETERLAMBATAN KEDATANGAN PENERBANGAN DENGAN METODE MACHINE LEARNING
title_sort prediksi keterlambatan kedatangan penerbangan dengan metode machine learning
url https://digilib.itb.ac.id/gdl/view/50685
_version_ 1822000728989761536