PROPERTIES OF ALMOST ZIP BEZOUT

Bezout ring is one of classes of ring that has important role in ring theory and its application. A ring is a Bezout ring if every finitely generated ideal is principal. Commutative Bezout domain is said to be almost zip ring if any nonzero nonunit element of R is almost zip element. Nonzero and...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Rahmawati, As'adah
التنسيق: Theses
اللغة:Indonesia
الموضوعات:
الوصول للمادة أونلاين:https://digilib.itb.ac.id/gdl/view/52176
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Institut Teknologi Bandung
اللغة: Indonesia
الوصف
الملخص:Bezout ring is one of classes of ring that has important role in ring theory and its application. A ring is a Bezout ring if every finitely generated ideal is principal. Commutative Bezout domain is said to be almost zip ring if any nonzero nonunit element of R is almost zip element. Nonzero and nonunit element a in ring R is said to be almost zip element if R=rad(aR) is a zip ring with rad(aR) is intersection of all prime ideals in ring aR. Zip ring is ring with annihilator of a ideal is zero, so annihilator of proper subset of ideal that is finitely generated ideal is zero. Almost zip Bezout domain was first introduced by Zabavsky and Romaniv in 2019. In this book, we give properties of Bezout domain, they are almost zip Bezout domain is J-Noetherian domain, elementary divisor domain, and fractionally regular domain.