FINITE DIFFERENCE METHOD FOR WAVE SHOALING PHENOMENON
In this final project, we will discuss wave shoaling phenomenon using mathematical model. The model which is used is Linear Shallow Water Equation (Linear Shallow Water Equation). This model is analytically-solved using separation of variables method in order to get the shoaling coefficient. The coe...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/54816 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
Summary: | In this final project, we will discuss wave shoaling phenomenon using mathematical model. The model which is used is Linear Shallow Water Equation (Linear Shallow Water Equation). This model is analytically-solved using separation of variables method in order to get the shoaling coefficient. The coefficient gives the information about how great the wave amplification in the shallower area. Other than that, several finite difference methods are constructed such as BTCS (Backward Time Centre Space), Lax, Lax-Wendroff, and Leapfrog. These schemes used to simulate the wave shoaling phenomenon over the linear transition shelf. Numerical simulation for this phenomenon is divided into two such as transmission coefficient with changing depth ratio and constant transitional domain width simulation and similar simulation with changing transitional domain width and constant depth ratio. Validation process is conducted by comparing the numerical simulation with the analytical solution. Then, numerical schemes are applied to simulate the wave shoaling phenomenon over a real bathymetry. The simulation is done for several bathymetries such as Aceh, East Kalimantan, East Java, dan Tanah Lot. The simulation result is well given, such that these schemes can be implemented to depict the real wave shoaling phenomenon. Furthermore, Lax-Wendroff scheme provides the closest result with the least relative error. |
---|