OBSERVATION ON CIRCULANT MDS (MAXIMUM DISTANCE SEPARABLE) MATRICES OVER FINITE RINGS

An n × n matrix is called MDS (Maximum Distance Separable) if and only if its submatrices are non-singular. MDS matrices are used in cryptography to construct diffusion layer which are part of block ciphers. Diffusion layer is used in encryption process to provide the security of the message. Obs...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Salsabila Noor Arifin, Izdihar
التنسيق: Theses
اللغة:Indonesia
الوصول للمادة أونلاين:https://digilib.itb.ac.id/gdl/view/63860
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Institut Teknologi Bandung
اللغة: Indonesia
الوصف
الملخص:An n × n matrix is called MDS (Maximum Distance Separable) if and only if its submatrices are non-singular. MDS matrices are used in cryptography to construct diffusion layer which are part of block ciphers. Diffusion layer is used in encryption process to provide the security of the message. Observation on MDS matrices has been commonly done in finite field F2k := F2[x]/?f(x)?, which f(x) is irreducible polynomial of degree k. In this thesis, we generalize finite fields to finite rings. The finite ring that used in this thesis is obtained by modifying the finite field F2k := F2[x]/?f(x)?, by changing F2 with Z2m or choosing polynomial f(x) which is reducible in the construction of F2[x]/?f(x)?. In particular, this thesis discusses about the existence of circulant MDS matrices which are involutory or orthogonal over those rings.