HANDWRITTEN NUMERICAL DIGIT CLASSIFICATION WITH (DEEP) GAUSSIAN PROCESSES
Pada tahun 2021 perkiraan jumlah manusia yang ada di bumi adalah 7.7 miliar manusia yang hidup di bumi ini, tidak ada satu pasang pun manusia yang serupa, termasuk manusia yang memiliki saudara kembar.
Saved in:
Main Author: | Adianto Harjono, Ferdinand |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/66207 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
Similar Items
-
Robust vision-based features and classification schemes for off-line handwritten digit recognition
by: Teow, L.-N., et al.
Published: (2013) -
COMPARISON OF DEEP CONVOLUTIONAL GAUSSIAN PROCESS MODEL WITH CONVOLUTIONAL NEURAL NETWORK IN IMAGE CLASSIFICATION
by: Alexander Owen, Nelson -
NEW ADVANCES IN BAYESIAN INFERENCE FOR GAUSSIAN PROCESS AND DEEP GAUSSIAN PROCESS MODELS
by: YU HAIBIN
Published: (2020) -
Performance of backpropagation algorithm for handwritten digits recognition
by: Pachaiyappan Venkatesan
Published: (2008) -
Deep transfer learning for classification of time-delayed Gaussian networks
by: Chaturvedi, Iti, et al.
Published: (2016)