RATE OF PENETRATION PREDICTION IN OIL FIELD DRILLING USING MACHINE LEARNING
Salah satu cara untuk mengoptimasi operasi pemboran adalah dengan memahami perilaku dari Rate of Penetration (ROP). Telah cukup banyak model yang diusulkan untuk memperkirakan ROP. Namun, banyak dari mereka yang cenderung lambat dan menunjukkan hasil yang tidak memuaskan. Oleh karena itu, kebutuhan...
Saved in:
Main Author: | Ere, Melani |
---|---|
Format: | Final Project |
Language: | Indonesia |
Subjects: | |
Online Access: | https://digilib.itb.ac.id/gdl/view/67525 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
Similar Items
-
IMPLEMENTATIONS OF MANAGED PRESSURE DRILLING TO OPTIMIZING THE RATE OF PENETRATION OF DRILLING IN CARBONATE FORMATIONS : PREDICTION USING LIGHT GBM ALGORITHM MACHINE LEARNING MODEL
by: Fajar, Muhammad -
OPTIMIZING DRILL BIT PERFORMANCE BY SETTING REVOLUTIONS PER MINUTE (RPM) AND WEIGHT ON BIT (WOB) TO OBTAIN OPTIMAL RATE OF PENETRATION (ROP): CASE STUDY OF DRILL-OFF TEST DATA ON WELL X, INDONESIA
by: Satya Wicaksana, Reyhan -
POROSITY PREDICTION USING MACHINE LEARNING MODEL: A CASE STUDY ON FIELD X
by: Satrio Pinandito, Fahmi -
OPTIMIZING OIL RECOVERY IN FIELD X JAMBI: EVALUATING WATERFLOODING, INFILL DRILLING, AND HYDRAULIC FRACTURING METHODS
by: Adetya Hasibuan, Tiara -
POROSITY AND PERMEABILITY PREDICTION USING MACHINE LEARNING ALGORITHM WORKFLOW CASE STUDY âXâ FIELD
by: Arief Rachmadinata, Alifian