PENGEMBANGAN ALGORITMA GENETIKA UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT

The competition in the manufacturing industry is getting tougher along with the shorter product life cycles. PT Mattel Indonesia, one of the manufacturers in the toy industry has implemented cobots to increase the company's productivity. Shorter product life cycles and the use of more advanc...

Full description

Saved in:
Bibliographic Details
Main Author: Ramaputri, Faradiva
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/68335
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:68335
spelling id-itb.:683352022-09-14T08:05:31ZPENGEMBANGAN ALGORITMA GENETIKA UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT Ramaputri, Faradiva Indonesia Final Project genetic algorithm, alternative subgraph assembly line balancing, human-robot collaboration. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/68335 The competition in the manufacturing industry is getting tougher along with the shorter product life cycles. PT Mattel Indonesia, one of the manufacturers in the toy industry has implemented cobots to increase the company's productivity. Shorter product life cycles and the use of more advanced technologies require the production line to fit the currently developed products. ASALBP-HRC is a system where there are alternative ways to assemble products while being done with a different type of operator. ASALBP-HRC cases that tend to be complicated can be solved by a metaheuristic method that can achieve feasible solutions with faster computational time. The metaheuristic method proposed in this research is a genetic algorithm. The proposed Genetic algorithm contains two main procedures, such as initial solution construction and solution improvement process. This research proposes a procedure for initial solution construction, tournament selection, crossover, and mutation specifically to fit the characteristics of ASABP-HRC system. The proposed genetic algorithm is translated into Python programming language to obtain solutions for several ASALBP-HRC cases. Based on the results, it is shown that the proposed genetic algorithm is capable of matching the optimal solution in several datasets with an average gap of 8,62% while having a faster computational time with an average time gap of 54%. For the same computational time as the analytical method, the genetic algorithm can obtain feasible solutions with a better objective value. Based on the experimental design, it is known that population size (P ) and the number of generations (N ) significantly affect the performance of genetic algorithms in finding solutions. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description The competition in the manufacturing industry is getting tougher along with the shorter product life cycles. PT Mattel Indonesia, one of the manufacturers in the toy industry has implemented cobots to increase the company's productivity. Shorter product life cycles and the use of more advanced technologies require the production line to fit the currently developed products. ASALBP-HRC is a system where there are alternative ways to assemble products while being done with a different type of operator. ASALBP-HRC cases that tend to be complicated can be solved by a metaheuristic method that can achieve feasible solutions with faster computational time. The metaheuristic method proposed in this research is a genetic algorithm. The proposed Genetic algorithm contains two main procedures, such as initial solution construction and solution improvement process. This research proposes a procedure for initial solution construction, tournament selection, crossover, and mutation specifically to fit the characteristics of ASABP-HRC system. The proposed genetic algorithm is translated into Python programming language to obtain solutions for several ASALBP-HRC cases. Based on the results, it is shown that the proposed genetic algorithm is capable of matching the optimal solution in several datasets with an average gap of 8,62% while having a faster computational time with an average time gap of 54%. For the same computational time as the analytical method, the genetic algorithm can obtain feasible solutions with a better objective value. Based on the experimental design, it is known that population size (P ) and the number of generations (N ) significantly affect the performance of genetic algorithms in finding solutions.
format Final Project
author Ramaputri, Faradiva
spellingShingle Ramaputri, Faradiva
PENGEMBANGAN ALGORITMA GENETIKA UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
author_facet Ramaputri, Faradiva
author_sort Ramaputri, Faradiva
title PENGEMBANGAN ALGORITMA GENETIKA UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_short PENGEMBANGAN ALGORITMA GENETIKA UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_full PENGEMBANGAN ALGORITMA GENETIKA UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_fullStr PENGEMBANGAN ALGORITMA GENETIKA UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_full_unstemmed PENGEMBANGAN ALGORITMA GENETIKA UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_sort pengembangan algoritma genetika untuk perancangan lintas perakitan dengan alternatif urutan perakitan dan perakitannya menggunakan kolaborasi manusia-robot
url https://digilib.itb.ac.id/gdl/view/68335
_version_ 1822933613271842816