PENGEMBANGAN ALGORITMA ANT COLONY OPTIMIZATION UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PROSES PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT

Industry 4.0 shows a new revolution on industry and pushes industry to change for better. One of the innovations in industry is the existence of collaborative robot (cobot). PT JVC Electronics Indonesia is one of the companies which use cobot and could save up to USD 80.000. This development also...

Full description

Saved in:
Bibliographic Details
Main Author: Naurah Triwidyatari, Dinda
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/68398
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:68398
spelling id-itb.:683982022-09-15T07:37:10ZPENGEMBANGAN ALGORITMA ANT COLONY OPTIMIZATION UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PROSES PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT Naurah Triwidyatari, Dinda Indonesia Final Project assembly line balancing, alternative subgraphs, human-robot collaboration, ant colony optimization INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/68398 Industry 4.0 shows a new revolution on industry and pushes industry to change for better. One of the innovations in industry is the existence of collaborative robot (cobot). PT JVC Electronics Indonesia is one of the companies which use cobot and could save up to USD 80.000. This development also drives a faster change on customer demand, leading to the creation of alternative task orders in an assembly line. Therefore, the industry needs to solve an alternative task (subgraphs) assembly line balancing problem using human-robot collaboration (ASALBP- HRC). One of the ways to solve ASALBP-HRC in a faster way is by using metaheuristic method. This research aims to develop an Ant Colony Optimization (ACO) algorithm to solve ASALBP- HRC to minimize takt time. This algorithm consists of two main procedures: a construction algorithm and an improvement algorithm. ACO algorithm uses several ants in each iteration to search for the solution. Each ant will leave pheromone trail used for other ants in successive iterations. This research also does parameter tuning using 1?4 fractional factorial design to get parameters significantly affecting the solution. Based on the computational result on nine data sets of different tasks, the ACO algorithm shows to get a feasible solution faster than analytical method with an average of time gap by 96,15% also average of objective value gap by 20,40%. Also, it shows that the number of iterations and the colony size are the parameters that affects the performance of ACO algorithm. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description Industry 4.0 shows a new revolution on industry and pushes industry to change for better. One of the innovations in industry is the existence of collaborative robot (cobot). PT JVC Electronics Indonesia is one of the companies which use cobot and could save up to USD 80.000. This development also drives a faster change on customer demand, leading to the creation of alternative task orders in an assembly line. Therefore, the industry needs to solve an alternative task (subgraphs) assembly line balancing problem using human-robot collaboration (ASALBP- HRC). One of the ways to solve ASALBP-HRC in a faster way is by using metaheuristic method. This research aims to develop an Ant Colony Optimization (ACO) algorithm to solve ASALBP- HRC to minimize takt time. This algorithm consists of two main procedures: a construction algorithm and an improvement algorithm. ACO algorithm uses several ants in each iteration to search for the solution. Each ant will leave pheromone trail used for other ants in successive iterations. This research also does parameter tuning using 1?4 fractional factorial design to get parameters significantly affecting the solution. Based on the computational result on nine data sets of different tasks, the ACO algorithm shows to get a feasible solution faster than analytical method with an average of time gap by 96,15% also average of objective value gap by 20,40%. Also, it shows that the number of iterations and the colony size are the parameters that affects the performance of ACO algorithm.
format Final Project
author Naurah Triwidyatari, Dinda
spellingShingle Naurah Triwidyatari, Dinda
PENGEMBANGAN ALGORITMA ANT COLONY OPTIMIZATION UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PROSES PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
author_facet Naurah Triwidyatari, Dinda
author_sort Naurah Triwidyatari, Dinda
title PENGEMBANGAN ALGORITMA ANT COLONY OPTIMIZATION UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PROSES PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_short PENGEMBANGAN ALGORITMA ANT COLONY OPTIMIZATION UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PROSES PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_full PENGEMBANGAN ALGORITMA ANT COLONY OPTIMIZATION UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PROSES PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_fullStr PENGEMBANGAN ALGORITMA ANT COLONY OPTIMIZATION UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PROSES PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_full_unstemmed PENGEMBANGAN ALGORITMA ANT COLONY OPTIMIZATION UNTUK PERANCANGAN LINTAS PERAKITAN DENGAN ALTERNATIF URUTAN PERAKITAN DAN PROSES PERAKITANNYA MENGGUNAKAN KOLABORASI MANUSIA-ROBOT
title_sort pengembangan algoritma ant colony optimization untuk perancangan lintas perakitan dengan alternatif urutan perakitan dan proses perakitannya menggunakan kolaborasi manusia-robot
url https://digilib.itb.ac.id/gdl/view/68398
_version_ 1822933632808910848