PERBANDINGAN METODE OPTIMASI DAN PEMODELAN KETIDAKPASTIAN DALAM OPTIMASI TOPOLOGI UNTUK KONDUKSI PANAS

This Thesis presents a comparison between different optimization methods of robust heat conduction topology optimization. In order to do so, different optimization method e.g. Optimality Criteria (OC), Method of Moving Asymptotes (MMA) and Stochastic Gradient Descent (SGD) are used. To obtain a r...

Full description

Saved in:
Bibliographic Details
Main Author: Limor, Frentsen
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/68425
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:68425
spelling id-itb.:684252022-09-15T09:22:50ZPERBANDINGAN METODE OPTIMASI DAN PEMODELAN KETIDAKPASTIAN DALAM OPTIMASI TOPOLOGI UNTUK KONDUKSI PANAS Limor, Frentsen Indonesia Final Project topology optimization, heat conduction, Method of Moving Asymptote, Optimality Criteria, Stochastic Gradient Descent, Monte Carlo Simulation, Polynomial Chaos Expansion INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/68425 This Thesis presents a comparison between different optimization methods of robust heat conduction topology optimization. In order to do so, different optimization method e.g. Optimality Criteria (OC), Method of Moving Asymptotes (MMA) and Stochastic Gradient Descent (SGD) are used. To obtain a robust optimization results, uncertainty is inputted in the problem. The uncertainty can be in the form of heat position, material conductivity and heat magnitude. The inclusion of this uncertainty will cause many deterministic results to be obtained, so it is necessary to find a way to include all the results of the deterministic optimization to update the design parameters. The statistical momentum approach is used in optimization which can be done in 2 ways, namely the Monte Carlo Simulations (MCS) and Polynomial Chaos Expansion (PCE) which also will be compared. This paper study the effect of pairing different optimization method with statistical moments and its effect to minimize compliance, convergence speed and constraints fulfillment speed. The results show that in terms of convergence speed and constraint, Optimality Criteria (OC) method stands out from the rest. For the minimization of the compliance, optimization methods such as Stochastic Gradient Descent (SGD) also its derivation (Adaptive Subgradient Methods) and Method of Moving Asymptotes yields better results in cases that has been done. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description This Thesis presents a comparison between different optimization methods of robust heat conduction topology optimization. In order to do so, different optimization method e.g. Optimality Criteria (OC), Method of Moving Asymptotes (MMA) and Stochastic Gradient Descent (SGD) are used. To obtain a robust optimization results, uncertainty is inputted in the problem. The uncertainty can be in the form of heat position, material conductivity and heat magnitude. The inclusion of this uncertainty will cause many deterministic results to be obtained, so it is necessary to find a way to include all the results of the deterministic optimization to update the design parameters. The statistical momentum approach is used in optimization which can be done in 2 ways, namely the Monte Carlo Simulations (MCS) and Polynomial Chaos Expansion (PCE) which also will be compared. This paper study the effect of pairing different optimization method with statistical moments and its effect to minimize compliance, convergence speed and constraints fulfillment speed. The results show that in terms of convergence speed and constraint, Optimality Criteria (OC) method stands out from the rest. For the minimization of the compliance, optimization methods such as Stochastic Gradient Descent (SGD) also its derivation (Adaptive Subgradient Methods) and Method of Moving Asymptotes yields better results in cases that has been done.
format Final Project
author Limor, Frentsen
spellingShingle Limor, Frentsen
PERBANDINGAN METODE OPTIMASI DAN PEMODELAN KETIDAKPASTIAN DALAM OPTIMASI TOPOLOGI UNTUK KONDUKSI PANAS
author_facet Limor, Frentsen
author_sort Limor, Frentsen
title PERBANDINGAN METODE OPTIMASI DAN PEMODELAN KETIDAKPASTIAN DALAM OPTIMASI TOPOLOGI UNTUK KONDUKSI PANAS
title_short PERBANDINGAN METODE OPTIMASI DAN PEMODELAN KETIDAKPASTIAN DALAM OPTIMASI TOPOLOGI UNTUK KONDUKSI PANAS
title_full PERBANDINGAN METODE OPTIMASI DAN PEMODELAN KETIDAKPASTIAN DALAM OPTIMASI TOPOLOGI UNTUK KONDUKSI PANAS
title_fullStr PERBANDINGAN METODE OPTIMASI DAN PEMODELAN KETIDAKPASTIAN DALAM OPTIMASI TOPOLOGI UNTUK KONDUKSI PANAS
title_full_unstemmed PERBANDINGAN METODE OPTIMASI DAN PEMODELAN KETIDAKPASTIAN DALAM OPTIMASI TOPOLOGI UNTUK KONDUKSI PANAS
title_sort perbandingan metode optimasi dan pemodelan ketidakpastian dalam optimasi topologi untuk konduksi panas
url https://digilib.itb.ac.id/gdl/view/68425
_version_ 1822933640050376704