BENTUK KUADRATIK DARI SUATU QUIVER
In this thesis we will discuss how a quiver Q corresponds to a path algebra A = KQ can represent some A-modules, and how we can determine the dimension vector of A-module and form Cartan matrix of the algebra A. Using Cartan matrix, we can dene Euler char- acteristic and Euler quadratic form of t...
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Subjects: | |
Online Access: | https://digilib.itb.ac.id/gdl/view/69701 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:69701 |
---|---|
spelling |
id-itb.:697012022-11-17T08:50:51ZBENTUK KUADRATIK DARI SUATU QUIVER K, DELSI Matematika Indonesia Theses Quiver, Path Algebra, Representation of Quiver, Dimension Vector, Quadratic Form INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/69701 In this thesis we will discuss how a quiver Q corresponds to a path algebra A = KQ can represent some A-modules, and how we can determine the dimension vector of A-module and form Cartan matrix of the algebra A. Using Cartan matrix, we can dene Euler char- acteristic and Euler quadratic form of the algebra A. Then we will show that the Euler quadratic form qA of the path algebra A = KQ and the quadratic form qQ of the quiver Q coincide. The main result in this thesis is if Q is a nite, connected, acyclic quiver, Q is graph of Q, then Dynkin graph Q corresponds to positive denite quadratic form, Euclidean graph Q corresponds to positive semidenite quadratic form but not positive denite, and Q which are neither Dynkin nor Euclidean graph corresponds to indenite quadratic form. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
topic |
Matematika |
spellingShingle |
Matematika K, DELSI BENTUK KUADRATIK DARI SUATU QUIVER |
description |
In this thesis we will discuss how a quiver Q corresponds to a path algebra A = KQ can
represent some A-modules, and how we can determine the dimension vector of A-module
and form Cartan matrix of the algebra A. Using Cartan matrix, we can dene Euler char-
acteristic and Euler quadratic form of the algebra A. Then we will show that the Euler
quadratic form qA of the path algebra A = KQ and the quadratic form qQ of the quiver
Q coincide. The main result in this thesis is if Q is a nite, connected, acyclic quiver,
Q is graph of Q, then Dynkin graph Q corresponds to positive denite quadratic form,
Euclidean graph Q corresponds to positive semidenite quadratic form but not positive
denite, and Q which are neither Dynkin nor Euclidean graph corresponds to indenite
quadratic form. |
format |
Theses |
author |
K, DELSI |
author_facet |
K, DELSI |
author_sort |
K, DELSI |
title |
BENTUK KUADRATIK DARI SUATU QUIVER |
title_short |
BENTUK KUADRATIK DARI SUATU QUIVER |
title_full |
BENTUK KUADRATIK DARI SUATU QUIVER |
title_fullStr |
BENTUK KUADRATIK DARI SUATU QUIVER |
title_full_unstemmed |
BENTUK KUADRATIK DARI SUATU QUIVER |
title_sort |
bentuk kuadratik dari suatu quiver |
url |
https://digilib.itb.ac.id/gdl/view/69701 |
_version_ |
1822991119560998912 |