INCOMPRESSIBLE FLOW SIMULATION IN EULERIAN FRAME OF REFERENCE USING LSMPS DERIVATIVE OPERATOR AND BRINKMAN PENALIZATION

Incompressible flow simulation is one of the most researched topic in aerodynamics. Incompressible assumption can be used to simulate slow moving flow over an obstacle to obtain aerodynamics coefficients such as lift and drag coefficient. One of the process of simulating a flow is mesh generation...

Full description

Saved in:
Bibliographic Details
Main Author: Adhipatiunus, Muhammad
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/70076
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
Description
Summary:Incompressible flow simulation is one of the most researched topic in aerodynamics. Incompressible assumption can be used to simulate slow moving flow over an obstacle to obtain aerodynamics coefficients such as lift and drag coefficient. One of the process of simulating a flow is mesh generation. Traditionally, mesh generation can be time consuming and difficult to use for moving and deforming object. To solve this problem, meshless method such as MPS and SPH were developed to allow simulation using meshless particle method where each particle acts as a node or computational unit instead of mesh, this saves the time required to mesh the computational domain. MPS is later developed as LSMPS which has better accuracy, and further research allows the use of multi-resolution particle where dense distribution of particles can be spread in area which requires high precision and sparse particle away from the obstacle. Generally, particle method uses Lagrangian frame of reference, however Eulerian frame of reference is convenient because particles do not move with respect to time thus the particle organization is the same throughout the simulation. However in Eulerian frame of reference, the convection term should be stabilized because of its hyperbolic nature. In this work, Brinkman penalization is also used to model the flow at the solid boundary. With Brinkman penalization, the velocity of solid body can be masked to enforce the non-slip condition. This paper presents the application of LSMPS and Brinkman penalization on a two dimensional flow over a sphere.