MEMPREDIKSI LAJU PRODUKSI MINYAK, GAS, DAN AIR MENGGUNAKAN RECURRENT NEURAL NETWORKS : STUDI KOMPARATIF DENGAN LSTM, GRU, DAN VANILLA RNN

This research focuses on using machine learning techniques to predict well performance in the petroleum industry. Traditional methods like Decline Curve Analysis and reservoir simulation have limitations in accurately predicting production performance. Therefore, the study explores the use of machin...

Full description

Saved in:
Bibliographic Details
Main Author: Putri Aurelia, Salsabila
Format: Final Project
Language:Indonesia
Subjects:
Online Access:https://digilib.itb.ac.id/gdl/view/73481
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:73481
spelling id-itb.:734812023-06-20T14:12:40ZMEMPREDIKSI LAJU PRODUKSI MINYAK, GAS, DAN AIR MENGGUNAKAN RECURRENT NEURAL NETWORKS : STUDI KOMPARATIF DENGAN LSTM, GRU, DAN VANILLA RNN Putri Aurelia, Salsabila Pertambangan dan operasi berkaitan Indonesia Final Project LSTM, GRU, and Vanilla RNN INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/73481 This research focuses on using machine learning techniques to predict well performance in the petroleum industry. Traditional methods like Decline Curve Analysis and reservoir simulation have limitations in accurately predicting production performance. Therefore, the study explores the use of machine learning algorithms, specifically LSTM, GRU, and Vanilla RNN, to forecast well performance production over time. The methodology involves collecting and preprocessing data, then splitting it into training, development, and test sets. The input data is scaled using min-max scaling. The models are implemented with specific architectures and trained using the Adam optimization algorithm and mean squared error as the loss function. The training process includes 50 epochs and early stopping to prevent overfitting. Hyperparameter tuning is conducted to optimize model performance. The results indicate that the LSTM model outperforms the GRU and Vanilla RNN models in terms of learning and generalization performance. Sensitivity analysis suggests that the GRU and Vanilla RNN models may not be suitable for the given task or dataset. The optimal hyperparameter values for the LSTM model are determined through sensitivity analysis. In conclusion, the LSTM model with optimized hyperparameters demonstrates the best performance for forecasting flow rates in well-performance prediction. This study provides insights into the effectiveness of different RNN architectures and contributes to predictive modeling in the oil and gas industry. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
topic Pertambangan dan operasi berkaitan
spellingShingle Pertambangan dan operasi berkaitan
Putri Aurelia, Salsabila
MEMPREDIKSI LAJU PRODUKSI MINYAK, GAS, DAN AIR MENGGUNAKAN RECURRENT NEURAL NETWORKS : STUDI KOMPARATIF DENGAN LSTM, GRU, DAN VANILLA RNN
description This research focuses on using machine learning techniques to predict well performance in the petroleum industry. Traditional methods like Decline Curve Analysis and reservoir simulation have limitations in accurately predicting production performance. Therefore, the study explores the use of machine learning algorithms, specifically LSTM, GRU, and Vanilla RNN, to forecast well performance production over time. The methodology involves collecting and preprocessing data, then splitting it into training, development, and test sets. The input data is scaled using min-max scaling. The models are implemented with specific architectures and trained using the Adam optimization algorithm and mean squared error as the loss function. The training process includes 50 epochs and early stopping to prevent overfitting. Hyperparameter tuning is conducted to optimize model performance. The results indicate that the LSTM model outperforms the GRU and Vanilla RNN models in terms of learning and generalization performance. Sensitivity analysis suggests that the GRU and Vanilla RNN models may not be suitable for the given task or dataset. The optimal hyperparameter values for the LSTM model are determined through sensitivity analysis. In conclusion, the LSTM model with optimized hyperparameters demonstrates the best performance for forecasting flow rates in well-performance prediction. This study provides insights into the effectiveness of different RNN architectures and contributes to predictive modeling in the oil and gas industry.
format Final Project
author Putri Aurelia, Salsabila
author_facet Putri Aurelia, Salsabila
author_sort Putri Aurelia, Salsabila
title MEMPREDIKSI LAJU PRODUKSI MINYAK, GAS, DAN AIR MENGGUNAKAN RECURRENT NEURAL NETWORKS : STUDI KOMPARATIF DENGAN LSTM, GRU, DAN VANILLA RNN
title_short MEMPREDIKSI LAJU PRODUKSI MINYAK, GAS, DAN AIR MENGGUNAKAN RECURRENT NEURAL NETWORKS : STUDI KOMPARATIF DENGAN LSTM, GRU, DAN VANILLA RNN
title_full MEMPREDIKSI LAJU PRODUKSI MINYAK, GAS, DAN AIR MENGGUNAKAN RECURRENT NEURAL NETWORKS : STUDI KOMPARATIF DENGAN LSTM, GRU, DAN VANILLA RNN
title_fullStr MEMPREDIKSI LAJU PRODUKSI MINYAK, GAS, DAN AIR MENGGUNAKAN RECURRENT NEURAL NETWORKS : STUDI KOMPARATIF DENGAN LSTM, GRU, DAN VANILLA RNN
title_full_unstemmed MEMPREDIKSI LAJU PRODUKSI MINYAK, GAS, DAN AIR MENGGUNAKAN RECURRENT NEURAL NETWORKS : STUDI KOMPARATIF DENGAN LSTM, GRU, DAN VANILLA RNN
title_sort memprediksi laju produksi minyak, gas, dan air menggunakan recurrent neural networks : studi komparatif dengan lstm, gru, dan vanilla rnn
url https://digilib.itb.ac.id/gdl/view/73481
_version_ 1822993080489345024