D-ANTIMAGIC LABELING ON ORIENTED GRAPHS

Let ??G be an oriented graph with vertex set V ( ??G ) and arc set A( ??G ). Suppose that D ? {0, 1, 2, . . . , ?} is a distance set where ? = max{d(u, v) < ?|u, v ? V ( ??G )}. Given a bijection h : V ( ??G ) ? {1, 2, , . . . , |V ( ??G )|}, the D-neighborhood weight of a vertex v ? V (...

Full description

Saved in:
Bibliographic Details
Main Author: Muchlas Abrar, Ahmad
Format: Theses
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/74548
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:74548
spelling id-itb.:745482023-07-18T08:02:59ZD-ANTIMAGIC LABELING ON ORIENTED GRAPHS Muchlas Abrar, Ahmad Indonesia Theses D-antimagic labeling, oriented graph. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/74548 Let ??G be an oriented graph with vertex set V ( ??G ) and arc set A( ??G ). Suppose that D ? {0, 1, 2, . . . , ?} is a distance set where ? = max{d(u, v) < ?|u, v ? V ( ??G )}. Given a bijection h : V ( ??G ) ? {1, 2, , . . . , |V ( ??G )|}, the D-neighborhood weight of a vertex v ? V ( ??G ) is defined as ?D(v) = P u?ND(v) h(u), where ND(v) = {u ? V |d(v, u) ? D}. A labeling h is called a D-antimagic labeling if for every pair of distinct vertices x and y, ?D(x) ?= ?D(y). An oriented graph ??G is called D-antimagic if ??G contains such labeling. In this thesis, we study the existences and characteristics of orientations on paths, cycles, complete bipartite graphs, and complete multipartite graphs such that those graphs admit D-antimagic labelings. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description Let ??G be an oriented graph with vertex set V ( ??G ) and arc set A( ??G ). Suppose that D ? {0, 1, 2, . . . , ?} is a distance set where ? = max{d(u, v) < ?|u, v ? V ( ??G )}. Given a bijection h : V ( ??G ) ? {1, 2, , . . . , |V ( ??G )|}, the D-neighborhood weight of a vertex v ? V ( ??G ) is defined as ?D(v) = P u?ND(v) h(u), where ND(v) = {u ? V |d(v, u) ? D}. A labeling h is called a D-antimagic labeling if for every pair of distinct vertices x and y, ?D(x) ?= ?D(y). An oriented graph ??G is called D-antimagic if ??G contains such labeling. In this thesis, we study the existences and characteristics of orientations on paths, cycles, complete bipartite graphs, and complete multipartite graphs such that those graphs admit D-antimagic labelings.
format Theses
author Muchlas Abrar, Ahmad
spellingShingle Muchlas Abrar, Ahmad
D-ANTIMAGIC LABELING ON ORIENTED GRAPHS
author_facet Muchlas Abrar, Ahmad
author_sort Muchlas Abrar, Ahmad
title D-ANTIMAGIC LABELING ON ORIENTED GRAPHS
title_short D-ANTIMAGIC LABELING ON ORIENTED GRAPHS
title_full D-ANTIMAGIC LABELING ON ORIENTED GRAPHS
title_fullStr D-ANTIMAGIC LABELING ON ORIENTED GRAPHS
title_full_unstemmed D-ANTIMAGIC LABELING ON ORIENTED GRAPHS
title_sort d-antimagic labeling on oriented graphs
url https://digilib.itb.ac.id/gdl/view/74548
_version_ 1822993853454483456