D-ANTIMAGIC LABELING ON ORIENTED GRAPHS
Let ??G be an oriented graph with vertex set V ( ??G ) and arc set A( ??G ). Suppose that D ? {0, 1, 2, . . . , ?} is a distance set where ? = max{d(u, v) < ?|u, v ? V ( ??G )}. Given a bijection h : V ( ??G ) ? {1, 2, , . . . , |V ( ??G )|}, the D-neighborhood weight of a vertex v ? V (...
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/74548 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:74548 |
---|---|
spelling |
id-itb.:745482023-07-18T08:02:59ZD-ANTIMAGIC LABELING ON ORIENTED GRAPHS Muchlas Abrar, Ahmad Indonesia Theses D-antimagic labeling, oriented graph. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/74548 Let ??G be an oriented graph with vertex set V ( ??G ) and arc set A( ??G ). Suppose that D ? {0, 1, 2, . . . , ?} is a distance set where ? = max{d(u, v) < ?|u, v ? V ( ??G )}. Given a bijection h : V ( ??G ) ? {1, 2, , . . . , |V ( ??G )|}, the D-neighborhood weight of a vertex v ? V ( ??G ) is defined as ?D(v) = P u?ND(v) h(u), where ND(v) = {u ? V |d(v, u) ? D}. A labeling h is called a D-antimagic labeling if for every pair of distinct vertices x and y, ?D(x) ?= ?D(y). An oriented graph ??G is called D-antimagic if ??G contains such labeling. In this thesis, we study the existences and characteristics of orientations on paths, cycles, complete bipartite graphs, and complete multipartite graphs such that those graphs admit D-antimagic labelings. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Let
??G be an oriented graph with vertex set V (
??G ) and arc set A(
??G ). Suppose that
D ? {0, 1, 2, . . . , ?} is a distance set where ? = max{d(u, v) < ?|u, v ? V (
??G )}.
Given a bijection h : V (
??G ) ? {1, 2, , . . . , |V (
??G )|}, the D-neighborhood
weight of a vertex v ? V (
??G ) is defined as ?D(v) =
P
u?ND(v) h(u), where
ND(v) = {u ? V |d(v, u) ? D}. A labeling h is called a D-antimagic labeling if
for every pair of distinct vertices x and y, ?D(x) ?= ?D(y). An oriented graph
??G is
called D-antimagic if
??G contains such labeling.
In this thesis, we study the existences and characteristics of orientations on paths,
cycles, complete bipartite graphs, and complete multipartite graphs such that those
graphs admit D-antimagic labelings. |
format |
Theses |
author |
Muchlas Abrar, Ahmad |
spellingShingle |
Muchlas Abrar, Ahmad D-ANTIMAGIC LABELING ON ORIENTED GRAPHS |
author_facet |
Muchlas Abrar, Ahmad |
author_sort |
Muchlas Abrar, Ahmad |
title |
D-ANTIMAGIC LABELING ON ORIENTED GRAPHS |
title_short |
D-ANTIMAGIC LABELING ON ORIENTED GRAPHS |
title_full |
D-ANTIMAGIC LABELING ON ORIENTED GRAPHS |
title_fullStr |
D-ANTIMAGIC LABELING ON ORIENTED GRAPHS |
title_full_unstemmed |
D-ANTIMAGIC LABELING ON ORIENTED GRAPHS |
title_sort |
d-antimagic labeling on oriented graphs |
url |
https://digilib.itb.ac.id/gdl/view/74548 |
_version_ |
1822993853454483456 |