COVID-19 INFECTIOUS PROGRESSION BASED ON VIRAL LOAD

Coronavirus disease (COVID-19) is an infectious disease caused by a new variant of the virus, the severe acute respiratory syndrome (SARS-CoV-20). According to research, more than 90% of infected individuals can spread the disease when the number of viruses in the host body reaches ?1x10^5 RNA copie...

Full description

Saved in:
Bibliographic Details
Main Author: Afifah, Salma
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/82038
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
Description
Summary:Coronavirus disease (COVID-19) is an infectious disease caused by a new variant of the virus, the severe acute respiratory syndrome (SARS-CoV-20). According to research, more than 90% of infected individuals can spread the disease when the number of viruses in the host body reaches ?1x10^5 RNA copies per mL. Later, another study showed that the spread of the virus occurred about 5-6 days before the individual showed the first symptoms. This fact suggests that someone who has been infected with the virus but is not aware of it can easily transmit the virus to others. Therefore, in this Final Task, a COVID-19 spread model will be introduced that monitors the number of viruses in the body by modifying the SEIR model to determine the extent of the influence of an infected individual who has not yet shown symptoms on the potential spread of the virus. In the model, a modification will be made to the ????????????1????2???? model, with ????1 showing the proportion of populations that can spread the virus before showing symptoms and ????2 showing the proportions of the populations capable of spreading the virus after showing a symptom. In addition, the model will be modified to ????????????1????2????3????, with ????2 showing proportions that may spread a virus when showing new symptoms, and ????3 indicating the percentage of the population that can spread the virus long after displaying the symptoms. The model also considers the isolated proportions to see the influence of isolation on the spread of COVID-19. The model will then be analyzed for the stability of the equilibrium point, the number of basic reproductions (?0), and numerical simulations. From the numerical results of the simulation, to prevent the virus not spreading significantly, it is necessary to increase the proportion of isolated populations as well as decrease disease spread in populations that have already shown symptoms. The most influential parameter on the spread of this virus is the proportion of the population isolated in ????2 (????2).