INTEGRATING MACHINE LEARNING FOR PREDICTING WATER ALTERNATING GAS INJECTION EFFICIENCY IN OIL RECOVERY
Penelitian ini bertujuan untuk menganalisis parameter Water Alternating Gas (WAG) yang sesuai untuk mengoptimalkan teknik Peningkatan Perolehan Minyak (EOR). Integrasi machine learning dengan teknik simulasi reservoir tradisional menyediakan kerangka kerja yang kuat untuk memprediksi dan meningkatka...
Saved in:
Main Author: | Paskahino Gulo, Nisoyawa |
---|---|
Format: | Final Project |
Language: | Indonesia |
Subjects: | |
Online Access: | https://digilib.itb.ac.id/gdl/view/82293 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
Similar Items
-
OPTIMIZATION AND ECONOMIC EVALUATION FOR OIL RECOVERY BY WATER ALTERNATING CO2 GAS INJECTION - HOMOGENEOUS AND HETEROGENEOUS RESERVOIR
by: Anabel, Vern -
THE EFFECTS OF SALINITY, CYCLE, AND GAS-WATER RATIO ON OIL RECOVERY AND CO2 STORAGE EFFICIENCY IN LSWA-CO2 GAS INJECTION AT âBâ STRUCTURE IN âSâ FIELD
by: Lorenza, Debby -
RESERVOIR SIMULATION OF CO2 WATER ALTERNATING GAS (WAG) INJECTION FOR ENHANCED OIL RECOVERY (EOR) AND CO2 SEQUESTRATION
by: Milenia, Fitri -
CO-OPTIMIZATION OF RECOVERY AND STORAGE FOR LOW SALINITY WATER ALTERNATING CO2 GAS INJECTION AT âBâ STRUCTURE IN âSâ FIELD BY DESIGNING INJECTION RATES AND GAS-WATER INJECTION RATIO
by: Fadhilatissalam, Anggie -
OPTIMIZING SURFACTANT SCREENING IN CHEMICAL ENHANCED OIL RECOVERY (CEOR) USING MACHINE LEARNING MODELS TO PREDICT INTERFACIAL TENSION (IFT) IN OIL-SURFACTANT-WATER SYSTEMS
by: Abdillah Aziz, Muhammad