PENGEMBANGAN SISTEM REKOMENDASI BERBASIS KNOWLEDGE GRAPH PADA APLIKASI WEB PERSONALIZED INTELLIGENT TUTORING SYSTEM UNTUK PEMBELAJARAN PEMROGRAMAN

In facing the shortage of digital talent in Indonesia, innovations are required to accelerate the fulfillment of increasing needs. CodeBuddy.ai is an intelligent tutoring system (ITS) web application that serves as a platform for learning basic C++ programming for beginners. This ITS is equipped...

Full description

Saved in:
Bibliographic Details
Main Author: Dwi Fadhilah, Rania
Format: Final Project
Language:Indonesia
Online Access:https://digilib.itb.ac.id/gdl/view/82410
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:82410
spelling id-itb.:824102024-07-08T10:54:25ZPENGEMBANGAN SISTEM REKOMENDASI BERBASIS KNOWLEDGE GRAPH PADA APLIKASI WEB PERSONALIZED INTELLIGENT TUTORING SYSTEM UNTUK PEMBELAJARAN PEMROGRAMAN Dwi Fadhilah, Rania Indonesia Final Project recommendation system, knowledge graph, intelligent tutoring system, personalization. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/82410 In facing the shortage of digital talent in Indonesia, innovations are required to accelerate the fulfillment of increasing needs. CodeBuddy.ai is an intelligent tutoring system (ITS) web application that serves as a platform for learning basic C++ programming for beginners. This ITS is equipped with personalization in the form of learning paths tailored to students' abilities through the use of a knowledge graph (KG)-based recommendation system. The recommendation system based on knowledge graphs is an approach used by this ITS because it can reflect semantic representation and adapt to the needs of the ITS. This study focuses on comparing two models within the KG-based recommendation system: semantic similarity calculation that uses semantic weighting for the calculation of entity similarity paths and random walk with KG embedding that explores relationships more broadly through its embedding results. Both models are evaluated for their ability to identify and recommend learning paths relevant to the programming learning domain in ITS. Experimental results show that the random walk with KG embedding has advantages in detecting distant entity relationships more effectively, making it superior in formulating accurate recommendations compared to the semantic similarity calculation model. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description In facing the shortage of digital talent in Indonesia, innovations are required to accelerate the fulfillment of increasing needs. CodeBuddy.ai is an intelligent tutoring system (ITS) web application that serves as a platform for learning basic C++ programming for beginners. This ITS is equipped with personalization in the form of learning paths tailored to students' abilities through the use of a knowledge graph (KG)-based recommendation system. The recommendation system based on knowledge graphs is an approach used by this ITS because it can reflect semantic representation and adapt to the needs of the ITS. This study focuses on comparing two models within the KG-based recommendation system: semantic similarity calculation that uses semantic weighting for the calculation of entity similarity paths and random walk with KG embedding that explores relationships more broadly through its embedding results. Both models are evaluated for their ability to identify and recommend learning paths relevant to the programming learning domain in ITS. Experimental results show that the random walk with KG embedding has advantages in detecting distant entity relationships more effectively, making it superior in formulating accurate recommendations compared to the semantic similarity calculation model.
format Final Project
author Dwi Fadhilah, Rania
spellingShingle Dwi Fadhilah, Rania
PENGEMBANGAN SISTEM REKOMENDASI BERBASIS KNOWLEDGE GRAPH PADA APLIKASI WEB PERSONALIZED INTELLIGENT TUTORING SYSTEM UNTUK PEMBELAJARAN PEMROGRAMAN
author_facet Dwi Fadhilah, Rania
author_sort Dwi Fadhilah, Rania
title PENGEMBANGAN SISTEM REKOMENDASI BERBASIS KNOWLEDGE GRAPH PADA APLIKASI WEB PERSONALIZED INTELLIGENT TUTORING SYSTEM UNTUK PEMBELAJARAN PEMROGRAMAN
title_short PENGEMBANGAN SISTEM REKOMENDASI BERBASIS KNOWLEDGE GRAPH PADA APLIKASI WEB PERSONALIZED INTELLIGENT TUTORING SYSTEM UNTUK PEMBELAJARAN PEMROGRAMAN
title_full PENGEMBANGAN SISTEM REKOMENDASI BERBASIS KNOWLEDGE GRAPH PADA APLIKASI WEB PERSONALIZED INTELLIGENT TUTORING SYSTEM UNTUK PEMBELAJARAN PEMROGRAMAN
title_fullStr PENGEMBANGAN SISTEM REKOMENDASI BERBASIS KNOWLEDGE GRAPH PADA APLIKASI WEB PERSONALIZED INTELLIGENT TUTORING SYSTEM UNTUK PEMBELAJARAN PEMROGRAMAN
title_full_unstemmed PENGEMBANGAN SISTEM REKOMENDASI BERBASIS KNOWLEDGE GRAPH PADA APLIKASI WEB PERSONALIZED INTELLIGENT TUTORING SYSTEM UNTUK PEMBELAJARAN PEMROGRAMAN
title_sort pengembangan sistem rekomendasi berbasis knowledge graph pada aplikasi web personalized intelligent tutoring system untuk pembelajaran pemrograman
url https://digilib.itb.ac.id/gdl/view/82410
_version_ 1822997689277612032