APPLICATION OF SINGULAR VALUE DECOMPOSITION IN PRINCIPAL COMPONENT ANALYSIS
Rapid technologicaladvancementsdemandefficiencyinextractingvitalinfor- mation fromlarge-scaledata.Dimensionreductionmethods,suchasprincipal component analysis(PCA),playacrucialroleinsimplifyingdatacomplexity to facilitateeasierinterpretationandanalysiswhileenhancingcomputational efficiency.PCAis...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/83544 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
Summary: | Rapid technologicaladvancementsdemandefficiencyinextractingvitalinfor-
mation fromlarge-scaledata.Dimensionreductionmethods,suchasprincipal
component analysis(PCA),playacrucialroleinsimplifyingdatacomplexity
to facilitateeasierinterpretationandanalysiswhileenhancingcomputational
efficiency.PCAiseffectiveinreducingdatadimensions,aimingtodecrease
complexitywhilemaintainingsignificantvariancesothattheessentialinformation
within thedataisstillwell-represented.Conventionally,PCAisperformedthrough
the decompositionofthecovariancematrix.However,PCAcanalsobeimple-
mented throughsingularvaluedecomposition(SVD),whichoffersadvantagesin
efficiencyandnumericalstability.ThisthesisdiscussesthePCAmethodandits
relationship withSVD,alongwithexamplesofitsapplicationtorealdata.Applying
SVD toPCAyieldstwoinformations.First,newaxesareestablishedthatformthe
basis foranewcoordinatesystem.Second,theprincipalcomponentscores,which
are theprojectionsoftheoriginaldataontothenewcoordinatesystem. |
---|