Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine
Tuberculosis is an infectious disease caused by bacillus Mycobacterium tuberculosis. Indonesia is the third country with the highest tuberculosis cases in the world, after India and China. This thesis aims to obtain the results of the identification model for predicting the spread of tuberculosis us...
Saved in:
id |
id-langga.111416 |
---|---|
record_format |
dspace |
spelling |
id-langga.1114162021-10-18T10:22:50Z https://repository.unair.ac.id/111416/ Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine Musfivawati, Mega, - QA1-939 Mathematics RC306-320.5 Tuberculosis Tuberculosis is an infectious disease caused by bacillus Mycobacterium tuberculosis. Indonesia is the third country with the highest tuberculosis cases in the world, after India and China. This thesis aims to obtain the results of the identification model for predicting the spread of tuberculosis using the Simulated Annealing and Extreme Learning Machine. The process begins with parameter estimation in the model using the Simulated Annealing Algorithm. After obtaining the optimal parameters in the model, the identification and prediction of the model is carried out using the Extreme Learning Machine Algorithm. Model identification and prediction are needed to anticipate and minimize the worst possible consequences of the fluctuation of tuberculosis cases. Based on the implementation and simulation of the data on the spread of Tuberculosis in East Java Province in the form of data per quarter starting from the first quarter of 2002 to the third quarter of 2019, it is obtained that MSE for the identification process is 0,002619 and in the model validation process an error value is obtained of 0,01979. Meanwhile, for the prediction process, it is obtained MSE of 0,02422 and in the prediction process, the error value is 0,01342. Based on the error values that have been obtained, it can be concluded that the identification of models for predicting the spread of tuberculosis using the Simulated Annealing Algorithm and Extreme Learning Machine is able to identify models to predict the spread of tuberculosis in the future well. 2021 Thesis NonPeerReviewed text id https://repository.unair.ac.id/111416/5/1.%20HALAMAN%20JUDUL.pdf text id https://repository.unair.ac.id/111416/2/2.%20ABSTRAK.pdf text id https://repository.unair.ac.id/111416/3/3.%20DAFTAR%20ISI.pdf text id https://repository.unair.ac.id/111416/1/4.%20BAB%20I%20PENDAHULUAN.pdf text id https://repository.unair.ac.id/111416/7/5.%20BAB%20II%20TINJAUAN%20PUSTAKA.pdf text id https://repository.unair.ac.id/111416/6/6.%20BAB%20III%20METODOLOGI%20PENELITIAN.pdf text id https://repository.unair.ac.id/111416/9/7.%20BAB%20IV%20PEMBAHASAN.pdf text id https://repository.unair.ac.id/111416/4/8.%20BAB%20V%20PENUTUP.pdf text id https://repository.unair.ac.id/111416/8/9.%20DAFTAR%20PUSTAKA.pdf text id https://repository.unair.ac.id/111416/10/10.%20LAMPIRAN.pdf text id https://repository.unair.ac.id/111416/21/11.%20PERMOHONAN%20EMBARGO.pdf Musfivawati, Mega, - (2021) Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine. Skripsi thesis, UNIVERSITAS AIRLANGGA. http://www.lib.unair.ac.id |
institution |
Universitas Airlangga |
building |
Universitas Airlangga Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Universitas Airlangga Library |
collection |
UNAIR Repository |
language |
Indonesian Indonesian Indonesian Indonesian Indonesian Indonesian Indonesian Indonesian Indonesian Indonesian Indonesian |
topic |
QA1-939 Mathematics RC306-320.5 Tuberculosis |
spellingShingle |
QA1-939 Mathematics RC306-320.5 Tuberculosis Musfivawati, Mega, - Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine |
description |
Tuberculosis is an infectious disease caused by bacillus Mycobacterium tuberculosis. Indonesia is the third country with the highest tuberculosis cases in the world, after India and China. This thesis aims to obtain the results of the identification model for predicting the spread of tuberculosis using the Simulated Annealing and Extreme Learning Machine. The process begins with parameter estimation in the model using the Simulated Annealing Algorithm. After obtaining the optimal parameters in the model, the identification and prediction of the model is carried out using the Extreme Learning Machine Algorithm. Model identification and prediction are needed to anticipate and minimize the worst possible consequences of the fluctuation of tuberculosis cases. Based on the implementation and simulation of the data on the spread of Tuberculosis in East Java Province in the form of data per quarter starting from the first quarter of 2002 to the third quarter of 2019, it is obtained that MSE for the identification process is 0,002619 and in the model validation process an error value is obtained of 0,01979. Meanwhile, for the prediction process, it is obtained MSE of 0,02422 and in the prediction process, the error value is 0,01342. Based on the error values that have been obtained, it can be concluded that the identification of models for predicting the spread of tuberculosis using the Simulated Annealing Algorithm and Extreme Learning Machine is able to identify models to predict the spread of tuberculosis in the future well. |
format |
Theses and Dissertations NonPeerReviewed |
author |
Musfivawati, Mega, - |
author_facet |
Musfivawati, Mega, - |
author_sort |
Musfivawati, Mega, - |
title |
Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine |
title_short |
Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine |
title_full |
Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine |
title_fullStr |
Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine |
title_full_unstemmed |
Identifikasi Model Untuk Prediksi Penyebaran Penyakit Tuberkulosis Menggunakan Simulated Annealing dan Extreme Learning Machine |
title_sort |
identifikasi model untuk prediksi penyebaran penyakit tuberkulosis menggunakan simulated annealing dan extreme learning machine |
publishDate |
2021 |
url |
https://repository.unair.ac.id/111416/5/1.%20HALAMAN%20JUDUL.pdf https://repository.unair.ac.id/111416/2/2.%20ABSTRAK.pdf https://repository.unair.ac.id/111416/3/3.%20DAFTAR%20ISI.pdf https://repository.unair.ac.id/111416/1/4.%20BAB%20I%20PENDAHULUAN.pdf https://repository.unair.ac.id/111416/7/5.%20BAB%20II%20TINJAUAN%20PUSTAKA.pdf https://repository.unair.ac.id/111416/6/6.%20BAB%20III%20METODOLOGI%20PENELITIAN.pdf https://repository.unair.ac.id/111416/9/7.%20BAB%20IV%20PEMBAHASAN.pdf https://repository.unair.ac.id/111416/4/8.%20BAB%20V%20PENUTUP.pdf https://repository.unair.ac.id/111416/8/9.%20DAFTAR%20PUSTAKA.pdf https://repository.unair.ac.id/111416/10/10.%20LAMPIRAN.pdf https://repository.unair.ac.id/111416/21/11.%20PERMOHONAN%20EMBARGO.pdf https://repository.unair.ac.id/111416/ http://www.lib.unair.ac.id |
_version_ |
1715207658855727104 |