SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN

Handwritten Character Recognition System (HCR) is classified into groups, offline and online. Offline HCR aims to recognize static image after handwritting is performed. As opposite, online HCR recognize image while handwriting is being performed. Offline HCR has more difficult challenges than onlin...

Full description

Saved in:
Bibliographic Details
Main Author: KENNY EVEREST KARNAMA, 081411631044
Format: Theses and Dissertations NonPeerReviewed
Language:English
Indonesian
Published: 2018
Subjects:
Online Access:http://repository.unair.ac.id/80194/1/ST.SI.05-19%20Kar%20s%20abstract.pdf
http://repository.unair.ac.id/80194/2/ST.SI.05-19%20Kar%20s.pdf
http://repository.unair.ac.id/80194/
http://lib.unair.ac.id
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Airlangga
Language: English
Indonesian
id id-langga.80194
record_format dspace
spelling id-langga.801942019-02-18T02:50:37Z http://repository.unair.ac.id/80194/ SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN KENNY EVEREST KARNAMA, 081411631044 TK5105 Computer networks and Data transmission systems Z004 Books. Writing. Paleography Handwritten Character Recognition System (HCR) is classified into groups, offline and online. Offline HCR aims to recognize static image after handwritting is performed. As opposite, online HCR recognize image while handwriting is being performed. Offline HCR has more difficult challenges than online character recognition due to insufficient temporal information such as number and direction of strokes, ink pressure, unpredictable and high variation of handwriting. These difficulties cause low accuracy achieved. The aim of this research is to detect existence of uncommon abbreviation on documents written in Bahasa Indonesia. Several steps conducted to detect uncommon abbreviations: collecting handwritten samples, performing image processing, neural network training. From classficiation process, there are two accuracy indicators used. Character accuracy by class and uncommon abbreviation detected. Character accuracy by class achieved is 60.47 % and for uncommon abbreviation detected accuracy is 27.89 %. Recognition performance achieved by using artificial neural network is better than other research using K-Nearest Neighbor where accuracy achieved is 46 %. 2018 Thesis NonPeerReviewed text en http://repository.unair.ac.id/80194/1/ST.SI.05-19%20Kar%20s%20abstract.pdf text id http://repository.unair.ac.id/80194/2/ST.SI.05-19%20Kar%20s.pdf KENNY EVEREST KARNAMA, 081411631044 (2018) SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN. Skripsi thesis, UNIVERSITAS AIRLANGGA. http://lib.unair.ac.id
institution Universitas Airlangga
building Universitas Airlangga Library
country Indonesia
collection UNAIR Repository
language English
Indonesian
topic TK5105 Computer networks and Data transmission systems
Z004 Books. Writing. Paleography
spellingShingle TK5105 Computer networks and Data transmission systems
Z004 Books. Writing. Paleography
KENNY EVEREST KARNAMA, 081411631044
SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN
description Handwritten Character Recognition System (HCR) is classified into groups, offline and online. Offline HCR aims to recognize static image after handwritting is performed. As opposite, online HCR recognize image while handwriting is being performed. Offline HCR has more difficult challenges than online character recognition due to insufficient temporal information such as number and direction of strokes, ink pressure, unpredictable and high variation of handwriting. These difficulties cause low accuracy achieved. The aim of this research is to detect existence of uncommon abbreviation on documents written in Bahasa Indonesia. Several steps conducted to detect uncommon abbreviations: collecting handwritten samples, performing image processing, neural network training. From classficiation process, there are two accuracy indicators used. Character accuracy by class and uncommon abbreviation detected. Character accuracy by class achieved is 60.47 % and for uncommon abbreviation detected accuracy is 27.89 %. Recognition performance achieved by using artificial neural network is better than other research using K-Nearest Neighbor where accuracy achieved is 46 %.
format Theses and Dissertations
NonPeerReviewed
author KENNY EVEREST KARNAMA, 081411631044
author_facet KENNY EVEREST KARNAMA, 081411631044
author_sort KENNY EVEREST KARNAMA, 081411631044
title SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN
title_short SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN
title_full SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN
title_fullStr SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN
title_full_unstemmed SISTEM PENGENALAN TULISAN TANGAN PADA DOKUMEN YANG MENGANDUNG SINGKATAN TIDAK LAZIM MENGGUNAKAN SKRIPSI JARINGAN SARAF TIRUAN
title_sort sistem pengenalan tulisan tangan pada dokumen yang mengandung singkatan tidak lazim menggunakan skripsi jaringan saraf tiruan
publishDate 2018
url http://repository.unair.ac.id/80194/1/ST.SI.05-19%20Kar%20s%20abstract.pdf
http://repository.unair.ac.id/80194/2/ST.SI.05-19%20Kar%20s.pdf
http://repository.unair.ac.id/80194/
http://lib.unair.ac.id
_version_ 1681151235022913536