Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation

Pattern recognition of handwritten letters is a topic that has been researched for many ears. The problems encountered in pattern recognition of handwritten characters is very complex, including the variety of models of handwriting and handwriting size. One of Pattern recognition of handwritten lett...

Full description

Saved in:
Bibliographic Details
Main Author: Adi Slamet Kusuma Wardana
Format: Theses and Dissertations NonPeerReviewed
Language:Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Published: 2011
Subjects:
Online Access:http://repository.unair.ac.id/95431/1/1.%20HALAMAN%20JUDUL.pdf
http://repository.unair.ac.id/95431/2/2.%20ABSTRAK%20.pdf
http://repository.unair.ac.id/95431/3/3.%20DAFTAR%20ISI%20.pdf
http://repository.unair.ac.id/95431/4/4.%20BAB%20I%20PENDAHULUAN%20.pdf
http://repository.unair.ac.id/95431/5/5.%20BAB%20II%20TINJAUAN%20PUSTAKA%20.pdf
http://repository.unair.ac.id/95431/6/6.%20BAB%20III%20METODE%20PENELITIAN.pdf
http://repository.unair.ac.id/95431/7/7.%20BAB%20IV%20PEMBAHASAN%20.pdf
http://repository.unair.ac.id/95431/8/8.%20BAB%20V%20PENUTUP.pdf
http://repository.unair.ac.id/95431/9/9.%20DAFTAR%20PUSTAKA%20.pdf
http://repository.unair.ac.id/95431/10/10.%20LAMPIRAN%20.pdf
http://repository.unair.ac.id/95431/
http:/www.lib.unair.ac.id
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Airlangga
Language: Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
id id-langga.95431
record_format dspace
spelling id-langga.954312020-05-28T13:51:18Z http://repository.unair.ac.id/95431/ Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation Adi Slamet Kusuma Wardana QA75.5-76.95 Electronic computers. Computer science Pattern recognition of handwritten letters is a topic that has been researched for many ears. The problems encountered in pattern recognition of handwritten characters is very complex, including the variety of models of handwriting and handwriting size. One of Pattern recognition of handwritten letters is artificial neural network, where this method uses a similar principle workings of the human brain. The purpose of this final project is applying artificial neural network to Pattern recognition of handwritten letters and create a program simulating this method using Visual Basic 6.0 software with supporting operation system. Artificial neural network architecture used is multilayer neural network with backpropagation algorithm. Data used are handwritten letters images with 60 x 60 pixel size which transformed into numeric with image processing. From the image processing numerical values obtained in the form of initial matrix size 60 x 60, with the segmentation process change initial matrix into a matrix measuring 20 x 20, then with the normalization matrix is converted into the final matrix size of 400 x 1 for each picture. From the normalization process will be a backpropagation neural network input for pattern recognition of handwritten letters. After the normalization process, input will be processed for training and testing. Network training using 156 handwritten letters data with 0,9 learning rate and 0,001 error, looping stopped at 143685th iteration. Validation test results for 104 images, we concluded that 71.15% of all successful validation images well recognized 2011-03-11 Thesis NonPeerReviewed text id http://repository.unair.ac.id/95431/1/1.%20HALAMAN%20JUDUL.pdf text id http://repository.unair.ac.id/95431/2/2.%20ABSTRAK%20.pdf text id http://repository.unair.ac.id/95431/3/3.%20DAFTAR%20ISI%20.pdf text id http://repository.unair.ac.id/95431/4/4.%20BAB%20I%20PENDAHULUAN%20.pdf text id http://repository.unair.ac.id/95431/5/5.%20BAB%20II%20TINJAUAN%20PUSTAKA%20.pdf text id http://repository.unair.ac.id/95431/6/6.%20BAB%20III%20METODE%20PENELITIAN.pdf text id http://repository.unair.ac.id/95431/7/7.%20BAB%20IV%20PEMBAHASAN%20.pdf text id http://repository.unair.ac.id/95431/8/8.%20BAB%20V%20PENUTUP.pdf text id http://repository.unair.ac.id/95431/9/9.%20DAFTAR%20PUSTAKA%20.pdf text id http://repository.unair.ac.id/95431/10/10.%20LAMPIRAN%20.pdf Adi Slamet Kusuma Wardana (2011) Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation. Skripsi thesis, UNIVERSITAS AIRLANGGA. http:/www.lib.unair.ac.id
institution Universitas Airlangga
building Universitas Airlangga Library
country Indonesia
collection UNAIR Repository
language Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
Indonesian
topic QA75.5-76.95 Electronic computers. Computer science
spellingShingle QA75.5-76.95 Electronic computers. Computer science
Adi Slamet Kusuma Wardana
Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation
description Pattern recognition of handwritten letters is a topic that has been researched for many ears. The problems encountered in pattern recognition of handwritten characters is very complex, including the variety of models of handwriting and handwriting size. One of Pattern recognition of handwritten letters is artificial neural network, where this method uses a similar principle workings of the human brain. The purpose of this final project is applying artificial neural network to Pattern recognition of handwritten letters and create a program simulating this method using Visual Basic 6.0 software with supporting operation system. Artificial neural network architecture used is multilayer neural network with backpropagation algorithm. Data used are handwritten letters images with 60 x 60 pixel size which transformed into numeric with image processing. From the image processing numerical values obtained in the form of initial matrix size 60 x 60, with the segmentation process change initial matrix into a matrix measuring 20 x 20, then with the normalization matrix is converted into the final matrix size of 400 x 1 for each picture. From the normalization process will be a backpropagation neural network input for pattern recognition of handwritten letters. After the normalization process, input will be processed for training and testing. Network training using 156 handwritten letters data with 0,9 learning rate and 0,001 error, looping stopped at 143685th iteration. Validation test results for 104 images, we concluded that 71.15% of all successful validation images well recognized
format Theses and Dissertations
NonPeerReviewed
author Adi Slamet Kusuma Wardana
author_facet Adi Slamet Kusuma Wardana
author_sort Adi Slamet Kusuma Wardana
title Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation
title_short Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation
title_full Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation
title_fullStr Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation
title_full_unstemmed Pengenalan Pola Huruf Tulisan Tangan Menggunakan Jaringan Syaraf Backpropagation
title_sort pengenalan pola huruf tulisan tangan menggunakan jaringan syaraf backpropagation
publishDate 2011
url http://repository.unair.ac.id/95431/1/1.%20HALAMAN%20JUDUL.pdf
http://repository.unair.ac.id/95431/2/2.%20ABSTRAK%20.pdf
http://repository.unair.ac.id/95431/3/3.%20DAFTAR%20ISI%20.pdf
http://repository.unair.ac.id/95431/4/4.%20BAB%20I%20PENDAHULUAN%20.pdf
http://repository.unair.ac.id/95431/5/5.%20BAB%20II%20TINJAUAN%20PUSTAKA%20.pdf
http://repository.unair.ac.id/95431/6/6.%20BAB%20III%20METODE%20PENELITIAN.pdf
http://repository.unair.ac.id/95431/7/7.%20BAB%20IV%20PEMBAHASAN%20.pdf
http://repository.unair.ac.id/95431/8/8.%20BAB%20V%20PENUTUP.pdf
http://repository.unair.ac.id/95431/9/9.%20DAFTAR%20PUSTAKA%20.pdf
http://repository.unair.ac.id/95431/10/10.%20LAMPIRAN%20.pdf
http://repository.unair.ac.id/95431/
http:/www.lib.unair.ac.id
_version_ 1681153504415055872