CLUSTERING BASED ON INDISCERNIBILITY OF ROUGH SET AND RANKED CLUSTERABILITY MODEL OF DYADIC DATA
The main focus of this thesis consists of three parts
Saved in:
Main Authors: | , RADEN BAGUS FAJRIYA HAKIM, S.Si., M.Si., , Prof. Drs.Subanar, Ph.D. |
---|---|
Format: | Theses and Dissertations NonPeerReviewed |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2012
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/100085/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=56637 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universitas Gadjah Mada |
Similar Items
-
Weighted rank regression for clustered data analysis
by: Wang, Y.-G., et al.
Published: (2016) -
Tensor low-rank representation for data recovery and clustering
by: ZHOU, Pan, et al.
Published: (2021) -
Klasifikasi penggunaan analisis diskriminan linear dan jaringan syaraf tiruan
by: , HAKIM, Raden Bagus Fajriya, et al.
Published: (2001) -
Low-rank sparse subspace for spectral clustering
by: ZHU, Xiaofeng, et al.
Published: (2019) -
Student clustering and prerequisite concept requirement mapping using a rough set based granular concept hierarchy
by: Sumalee Sonamthiang
Published: (2023)