IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat)

Levenberg Marquardt algorithm is used for training feedforward neural networks because of the effectiveness and convergence acceleration. Levenberg Marquardt is nonliear optimization method that used for backpropagation to find adjusted weights. Regularization can improve the performance of the neur...

Full description

Saved in:
Bibliographic Details
Main Authors: , Yasinta Lisa, , Drs. Retantyo Wardoyo, M.Sc., Ph.D
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2012
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/101013/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=57670
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.101013
record_format dspace
spelling id-ugm-repo.1010132016-03-04T08:49:30Z https://repository.ugm.ac.id/101013/ IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat) , Yasinta Lisa , Drs. Retantyo Wardoyo, M.Sc., Ph.D ETD Levenberg Marquardt algorithm is used for training feedforward neural networks because of the effectiveness and convergence acceleration. Levenberg Marquardt is nonliear optimization method that used for backpropagation to find adjusted weights. Regularization can improve the performance of the neural network generalization. Regularization technique that often used is the regularization bayes. This study was conducted to determine the performance of Levenberg Marquardt training neural networks method with the addition of regularization for time series data forecasting, compared with Levenberg Marquardt algorithm without regularization. The data used in this study were monthly data of rainfall, average temperature, humidity, air pressure above the observation stations and the average wind speed at the observation station Pangsuma Putussibau West Kalimantan in 2008-2009. Training data was done on a neural network in a single hidden layer with three neurons and one neuron in the output layer. The network architecture was determined by trial and error and shown the best training MSE generated. In this case, the study results showed that Levenberg Marquardt algorithm with regularization was better used. [Yogyakarta] : Universitas Gadjah Mada 2012 Thesis NonPeerReviewed , Yasinta Lisa and , Drs. Retantyo Wardoyo, M.Sc., Ph.D (2012) IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat). UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=57670
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, Yasinta Lisa
, Drs. Retantyo Wardoyo, M.Sc., Ph.D
IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat)
description Levenberg Marquardt algorithm is used for training feedforward neural networks because of the effectiveness and convergence acceleration. Levenberg Marquardt is nonliear optimization method that used for backpropagation to find adjusted weights. Regularization can improve the performance of the neural network generalization. Regularization technique that often used is the regularization bayes. This study was conducted to determine the performance of Levenberg Marquardt training neural networks method with the addition of regularization for time series data forecasting, compared with Levenberg Marquardt algorithm without regularization. The data used in this study were monthly data of rainfall, average temperature, humidity, air pressure above the observation stations and the average wind speed at the observation station Pangsuma Putussibau West Kalimantan in 2008-2009. Training data was done on a neural network in a single hidden layer with three neurons and one neuron in the output layer. The network architecture was determined by trial and error and shown the best training MSE generated. In this case, the study results showed that Levenberg Marquardt algorithm with regularization was better used.
format Theses and Dissertations
NonPeerReviewed
author , Yasinta Lisa
, Drs. Retantyo Wardoyo, M.Sc., Ph.D
author_facet , Yasinta Lisa
, Drs. Retantyo Wardoyo, M.Sc., Ph.D
author_sort , Yasinta Lisa
title IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat)
title_short IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat)
title_full IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat)
title_fullStr IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat)
title_full_unstemmed IMPLEMENTASI ALGORITMA PELATIHAN LEVENBERG MARQUARDT DAN BAYES REGULARISASI PADA JARINGAN SYARAF TIRUAN UNTUK PREDIKSI CURAH HUJAN (Studi Kasus : Stasiun pengamatan curah hujan Pangsuma Putussibau, Kalimantan Barat)
title_sort implementasi algoritma pelatihan levenberg marquardt dan bayes regularisasi pada jaringan syaraf tiruan untuk prediksi curah hujan (studi kasus : stasiun pengamatan curah hujan pangsuma putussibau, kalimantan barat)
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2012
url https://repository.ugm.ac.id/101013/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=57670
_version_ 1681230843480113152