SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali )

Artificial Neural Network (ANN) can be used to solve specific problems such as prediction, classification, data processing, and robotics. Based on the exposure, so in this study tried to apply neural networks to handle problems in apprentice program facing in an effort to increase the competence, ex...

Full description

Saved in:
Bibliographic Details
Main Authors: , Agus Aan Jiwa Permana, , Drs.Widodo Prijodiprodjo, M.Sc.,EE.
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2013
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/119062/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=59053
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.119062
record_format dspace
spelling id-ugm-repo.1190622016-03-04T08:25:45Z https://repository.ugm.ac.id/119062/ SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali ) , Agus Aan Jiwa Permana , Drs.Widodo Prijodiprodjo, M.Sc.,EE., ETD Artificial Neural Network (ANN) can be used to solve specific problems such as prediction, classification, data processing, and robotics. Based on the exposure, so in this study tried to apply neural networks to handle problems in apprentice program facing in an effort to increase the competence, experience and soft skills training students. The system developed can be used to evaluate the students in the apprentice program to other regions by applying the Elman Recurrent Neural Network (ERNN), so it can provide accurate information to the department to determine appropriate decisions. Elman structure was chosen because it can be create much more rapidly iterations so as to facilitate the convergence process. The learning method used is Backpropagation Through Time with model epochwise training mode. The system is implemented using the C # programming language with a MySQL database. Input vector used consists of 11 variables. The results showed that the developed system will rapidly converge and can reach optimal error value (minimum error) when using one hidden layer with 20 units number of neurons. Best accuracy can be obtained using the LR of 0.01 and momentum 0.85 which average accuracy reaches 87.50% in testing. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , Agus Aan Jiwa Permana and , Drs.Widodo Prijodiprodjo, M.Sc.,EE., (2013) SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali ). UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=59053
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, Agus Aan Jiwa Permana
, Drs.Widodo Prijodiprodjo, M.Sc.,EE.,
SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali )
description Artificial Neural Network (ANN) can be used to solve specific problems such as prediction, classification, data processing, and robotics. Based on the exposure, so in this study tried to apply neural networks to handle problems in apprentice program facing in an effort to increase the competence, experience and soft skills training students. The system developed can be used to evaluate the students in the apprentice program to other regions by applying the Elman Recurrent Neural Network (ERNN), so it can provide accurate information to the department to determine appropriate decisions. Elman structure was chosen because it can be create much more rapidly iterations so as to facilitate the convergence process. The learning method used is Backpropagation Through Time with model epochwise training mode. The system is implemented using the C # programming language with a MySQL database. Input vector used consists of 11 variables. The results showed that the developed system will rapidly converge and can reach optimal error value (minimum error) when using one hidden layer with 20 units number of neurons. Best accuracy can be obtained using the LR of 0.01 and momentum 0.85 which average accuracy reaches 87.50% in testing.
format Theses and Dissertations
NonPeerReviewed
author , Agus Aan Jiwa Permana
, Drs.Widodo Prijodiprodjo, M.Sc.,EE.,
author_facet , Agus Aan Jiwa Permana
, Drs.Widodo Prijodiprodjo, M.Sc.,EE.,
author_sort , Agus Aan Jiwa Permana
title SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali )
title_short SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali )
title_full SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali )
title_fullStr SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali )
title_full_unstemmed SISTEM CERDAS EVALUASI KELAYAKAN MAHASISWA MAGANG MENGGUNAKAN ELMAN RECURRENT NEURAL NETWORK (ERNN) ( Studi Kasus : Jurusan Manajemen Informatika, Fakultas Teknik dan Kejuruan, Universitas Pendidikan Ganesha, Singaraja-Bali )
title_sort sistem cerdas evaluasi kelayakan mahasiswa magang menggunakan elman recurrent neural network (ernn) ( studi kasus : jurusan manajemen informatika, fakultas teknik dan kejuruan, universitas pendidikan ganesha, singaraja-bali )
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2013
url https://repository.ugm.ac.id/119062/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=59053
_version_ 1681231075239526400