KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN
Electromyograph (EMG) Signal is a biomedical signal that non-stationary, making it difficult to determine a pattern. The method is usually used for signal analysis is the Fast Fourier Transform (FFT), but has a number of lack of due have to stable signal. To answer this deficiency used wavelet trans...
Saved in:
Main Authors: | , |
---|---|
Format: | Theses and Dissertations NonPeerReviewed |
Published: |
[Yogyakarta] : Universitas Gadjah Mada
2013
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/126173/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=66371 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universitas Gadjah Mada |
id |
id-ugm-repo.126173 |
---|---|
record_format |
dspace |
spelling |
id-ugm-repo.1261732016-03-04T08:45:02Z https://repository.ugm.ac.id/126173/ KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN , ikhwan mustiadi , Prof. Dr. Thomas Sri Widodo, D.E.A ETD Electromyograph (EMG) Signal is a biomedical signal that non-stationary, making it difficult to determine a pattern. The method is usually used for signal analysis is the Fast Fourier Transform (FFT), but has a number of lack of due have to stable signal. To answer this deficiency used wavelet transform, especially discrete wavelet transform to analyze signals in both time and frequency domains. The method used in this study is the wavelet transform for signal analysis by decomposition up to level 7 using wavelet symlet 8. Results of feature extraction is used as input Neural Network (ANN) with back propagation architecture type 8 units of input layer, 5 units of hidden layer and 3 units of output layer ANN can recognize patterns of EMG signals with the architecture of the EMG signal success rate for a healthy 74%, myopathy 96% and neuropathy 84%. So that the architecture is proposed for classification EMG signals. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , ikhwan mustiadi and , Prof. Dr. Thomas Sri Widodo, D.E.A (2013) KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=66371 |
institution |
Universitas Gadjah Mada |
building |
UGM Library |
country |
Indonesia |
collection |
Repository Civitas UGM |
topic |
ETD |
spellingShingle |
ETD , ikhwan mustiadi , Prof. Dr. Thomas Sri Widodo, D.E.A KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN |
description |
Electromyograph (EMG) Signal is a biomedical signal that non-stationary,
making it difficult to determine a pattern. The method is usually used for signal
analysis is the Fast Fourier Transform (FFT), but has a number of lack of due
have to stable signal. To answer this deficiency used wavelet transform, especially
discrete wavelet transform to analyze signals in both time and frequency domains.
The method used in this study is the wavelet transform for signal analysis by
decomposition up to level 7 using wavelet symlet 8. Results of feature extraction
is used as input Neural Network (ANN) with back propagation architecture type 8
units of input layer, 5 units of hidden layer and 3 units of output layer
ANN can recognize patterns of EMG signals with the architecture of the EMG
signal success rate for a healthy 74%, myopathy 96% and neuropathy 84%. So
that the architecture is proposed for classification EMG signals. |
format |
Theses and Dissertations NonPeerReviewed |
author |
, ikhwan mustiadi , Prof. Dr. Thomas Sri Widodo, D.E.A |
author_facet |
, ikhwan mustiadi , Prof. Dr. Thomas Sri Widodo, D.E.A |
author_sort |
, ikhwan mustiadi |
title |
KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN |
title_short |
KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN |
title_full |
KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN |
title_fullStr |
KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN |
title_full_unstemmed |
KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN |
title_sort |
klasifikasi sinyal emg berbasis wavelet dan jaringan syaraf tiruan |
publisher |
[Yogyakarta] : Universitas Gadjah Mada |
publishDate |
2013 |
url |
https://repository.ugm.ac.id/126173/ http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=66371 |
_version_ |
1681232390446383104 |