KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN

Electromyograph (EMG) Signal is a biomedical signal that non-stationary, making it difficult to determine a pattern. The method is usually used for signal analysis is the Fast Fourier Transform (FFT), but has a number of lack of due have to stable signal. To answer this deficiency used wavelet trans...

Full description

Saved in:
Bibliographic Details
Main Authors: , ikhwan mustiadi, , Prof. Dr. Thomas Sri Widodo, D.E.A
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2013
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/126173/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=66371
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.126173
record_format dspace
spelling id-ugm-repo.1261732016-03-04T08:45:02Z https://repository.ugm.ac.id/126173/ KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN , ikhwan mustiadi , Prof. Dr. Thomas Sri Widodo, D.E.A ETD Electromyograph (EMG) Signal is a biomedical signal that non-stationary, making it difficult to determine a pattern. The method is usually used for signal analysis is the Fast Fourier Transform (FFT), but has a number of lack of due have to stable signal. To answer this deficiency used wavelet transform, especially discrete wavelet transform to analyze signals in both time and frequency domains. The method used in this study is the wavelet transform for signal analysis by decomposition up to level 7 using wavelet symlet 8. Results of feature extraction is used as input Neural Network (ANN) with back propagation architecture type 8 units of input layer, 5 units of hidden layer and 3 units of output layer ANN can recognize patterns of EMG signals with the architecture of the EMG signal success rate for a healthy 74%, myopathy 96% and neuropathy 84%. So that the architecture is proposed for classification EMG signals. [Yogyakarta] : Universitas Gadjah Mada 2013 Thesis NonPeerReviewed , ikhwan mustiadi and , Prof. Dr. Thomas Sri Widodo, D.E.A (2013) KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=66371
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, ikhwan mustiadi
, Prof. Dr. Thomas Sri Widodo, D.E.A
KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN
description Electromyograph (EMG) Signal is a biomedical signal that non-stationary, making it difficult to determine a pattern. The method is usually used for signal analysis is the Fast Fourier Transform (FFT), but has a number of lack of due have to stable signal. To answer this deficiency used wavelet transform, especially discrete wavelet transform to analyze signals in both time and frequency domains. The method used in this study is the wavelet transform for signal analysis by decomposition up to level 7 using wavelet symlet 8. Results of feature extraction is used as input Neural Network (ANN) with back propagation architecture type 8 units of input layer, 5 units of hidden layer and 3 units of output layer ANN can recognize patterns of EMG signals with the architecture of the EMG signal success rate for a healthy 74%, myopathy 96% and neuropathy 84%. So that the architecture is proposed for classification EMG signals.
format Theses and Dissertations
NonPeerReviewed
author , ikhwan mustiadi
, Prof. Dr. Thomas Sri Widodo, D.E.A
author_facet , ikhwan mustiadi
, Prof. Dr. Thomas Sri Widodo, D.E.A
author_sort , ikhwan mustiadi
title KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN
title_short KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN
title_full KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN
title_fullStr KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN
title_full_unstemmed KLASIFIKASI SINYAL EMG BERBASIS WAVELET DAN JARINGAN SYARAF TIRUAN
title_sort klasifikasi sinyal emg berbasis wavelet dan jaringan syaraf tiruan
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2013
url https://repository.ugm.ac.id/126173/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=66371
_version_ 1681232390446383104