TRANSFORMASI SCHWARZ-CHRISTOFFEL PADA DOMAIN DEFINISI UPPER HALF PLANE DAN CAKRAM SATUAN

Riemann mapping theorem states that there is an analytic bijective mapping which maps a simply connected region to unit disk. It causes two impacts. First, there is an analytic bijective mapping which maps upper half plane to interior of polygon. Second, there is an analytic bijective mapping which...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: , ERIK MAURTEN FIRDAUS, , Drs. Yusuf, M.A. Math.
التنسيق: Theses and Dissertations NonPeerReviewed
منشور في: [Yogyakarta] : Universitas Gadjah Mada 2014
الموضوعات:
ETD
الوصول للمادة أونلاين:https://repository.ugm.ac.id/127684/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=67952
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Universitas Gadjah Mada
الوصف
الملخص:Riemann mapping theorem states that there is an analytic bijective mapping which maps a simply connected region to unit disk. It causes two impacts. First, there is an analytic bijective mapping which maps upper half plane to interior of polygon. Second, there is an analytic bijective mapping which maps unit disk to interior of polygon. Schwarz-Christoffel mapping fulfills the existence of both of these mapping. In this final project, we explore about Schwarz-Christoffel mapping characteristics such as conformal, well defined, and continuous extension.