PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG)

Artificial Neural Networks (ANN) can be used to solve specific problems such as prediction, classification, processing data, and robotics. Based on the exposure, this study tried to develop a system by applying ANN models Fully Recurrent Neural Network (FRNN) to deal with the problems of classificat...

Full description

Saved in:
Bibliographic Details
Main Authors: , KORNELIS LETELAY, , Drs. Retantyo Wardoyo, M.Sc., Ph.D.
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2014
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/129838/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=70241
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.129838
record_format dspace
spelling id-ugm-repo.1298382016-03-04T07:58:02Z https://repository.ugm.ac.id/129838/ PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG) , KORNELIS LETELAY , Drs. Retantyo Wardoyo, M.Sc., Ph.D. ETD Artificial Neural Networks (ANN) can be used to solve specific problems such as prediction, classification, processing data, and robotics. Based on the exposure, this study tried to develop a system by applying ANN models Fully Recurrent Neural Network (FRNN) to deal with the problems of classification determination unit for New Police Officer at SPN Kupang include DitSabara, DitPolAir, and SatBrimob, which has been using the system manually, the ANN system Fully Recurrent Neural Networks can provide accurate information to the SPN Kupang to determine the right decision. Fully Recurrent Neural Network structures have been presence of feedback that can make faster iteration thus making the update parameters and convergence speed become faster. The learning method used is Backpropagation Through Time. The system is implemented using the C# program. Input vectors used consisted of 7 variables. The results showed t the developed system will rapidly converge and able to achieve the most optimal error value (minimum error) when using one hidden layer with 17 units of the number of neurons . The best accuracy can be obtained using the LR of 0.001 , target of 0.1 and momentum 0.95, with 25 test data of data, the system accuracy reaches 96%, while the real data, the accuracy reached 83.33%. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , KORNELIS LETELAY and , Drs. Retantyo Wardoyo, M.Sc., Ph.D. (2014) PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG). UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=70241
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, KORNELIS LETELAY
, Drs. Retantyo Wardoyo, M.Sc., Ph.D.
PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG)
description Artificial Neural Networks (ANN) can be used to solve specific problems such as prediction, classification, processing data, and robotics. Based on the exposure, this study tried to develop a system by applying ANN models Fully Recurrent Neural Network (FRNN) to deal with the problems of classification determination unit for New Police Officer at SPN Kupang include DitSabara, DitPolAir, and SatBrimob, which has been using the system manually, the ANN system Fully Recurrent Neural Networks can provide accurate information to the SPN Kupang to determine the right decision. Fully Recurrent Neural Network structures have been presence of feedback that can make faster iteration thus making the update parameters and convergence speed become faster. The learning method used is Backpropagation Through Time. The system is implemented using the C# program. Input vectors used consisted of 7 variables. The results showed t the developed system will rapidly converge and able to achieve the most optimal error value (minimum error) when using one hidden layer with 17 units of the number of neurons . The best accuracy can be obtained using the LR of 0.001 , target of 0.1 and momentum 0.95, with 25 test data of data, the system accuracy reaches 96%, while the real data, the accuracy reached 83.33%.
format Theses and Dissertations
NonPeerReviewed
author , KORNELIS LETELAY
, Drs. Retantyo Wardoyo, M.Sc., Ph.D.
author_facet , KORNELIS LETELAY
, Drs. Retantyo Wardoyo, M.Sc., Ph.D.
author_sort , KORNELIS LETELAY
title PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG)
title_short PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG)
title_full PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG)
title_fullStr PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG)
title_full_unstemmed PENENTUAN SATUAN KERJA BAGI BINTARA POLISI BARU PADA SEKOLAH POLISI NEGARA MENGGUNAKAN FULLY RECURRENT NEURAL NETWORK (STUDI KASUS : SPN KUPANG)
title_sort penentuan satuan kerja bagi bintara polisi baru pada sekolah polisi negara menggunakan fully recurrent neural network (studi kasus : spn kupang)
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2014
url https://repository.ugm.ac.id/129838/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=70241
_version_ 1681233043827720192