PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE

Signature represents biometric feature useful to verify individual�s identity. The study presents the implementation of the signature identification with Support Vector Machine and compared with neural network backpropagation of 100 signature samples. Feature extraction using vertical splitting an...

Full description

Saved in:
Bibliographic Details
Main Authors: , Barry Caesar Oktariyadi, , Drs. Agus Harjoko, M.Sc., Ph.D
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2014
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/130236/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=70651
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.130236
record_format dspace
spelling id-ugm-repo.1302362016-03-04T07:53:26Z https://repository.ugm.ac.id/130236/ PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE , Barry Caesar Oktariyadi , Drs. Agus Harjoko, M.Sc., Ph.D ETD Signature represents biometric feature useful to verify individual�s identity. The study presents the implementation of the signature identification with Support Vector Machine and compared with neural network backpropagation of 100 signature samples. Feature extraction using vertical splitting and horizontal splitting to get the value of the angle and distance as the characteristic value of the signature which would then be in the process. Artificial neural network classification methods Backpropagation earning Neural Network (ANN-BP) and support vector machine (SVM). The Artificial Neural Network with Backpropagation learning method consists of 100 input nodes, 3 hidden layer and 2 output nodes, while its learning function uses resilient backpropagation. Support Vector Machine (SVM) is implemented using one-againt-one method. ANN-BP has an accuracy in the verification of 98.5%, while SVM 94.5% for Traced signatures, ANN with back propagation method is able to verify with the accuracy of 82%, while for the new SVM signatures could not be verified with an accuracy of 43%. The JST with the backpropagation method is faster for the learning process than the SVM. [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , Barry Caesar Oktariyadi and , Drs. Agus Harjoko, M.Sc., Ph.D (2014) PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=70651
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, Barry Caesar Oktariyadi
, Drs. Agus Harjoko, M.Sc., Ph.D
PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE
description Signature represents biometric feature useful to verify individual�s identity. The study presents the implementation of the signature identification with Support Vector Machine and compared with neural network backpropagation of 100 signature samples. Feature extraction using vertical splitting and horizontal splitting to get the value of the angle and distance as the characteristic value of the signature which would then be in the process. Artificial neural network classification methods Backpropagation earning Neural Network (ANN-BP) and support vector machine (SVM). The Artificial Neural Network with Backpropagation learning method consists of 100 input nodes, 3 hidden layer and 2 output nodes, while its learning function uses resilient backpropagation. Support Vector Machine (SVM) is implemented using one-againt-one method. ANN-BP has an accuracy in the verification of 98.5%, while SVM 94.5% for Traced signatures, ANN with back propagation method is able to verify with the accuracy of 82%, while for the new SVM signatures could not be verified with an accuracy of 43%. The JST with the backpropagation method is faster for the learning process than the SVM.
format Theses and Dissertations
NonPeerReviewed
author , Barry Caesar Oktariyadi
, Drs. Agus Harjoko, M.Sc., Ph.D
author_facet , Barry Caesar Oktariyadi
, Drs. Agus Harjoko, M.Sc., Ph.D
author_sort , Barry Caesar Oktariyadi
title PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE
title_short PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE
title_full PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE
title_fullStr PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE
title_full_unstemmed PERBANDINGAN VERIFIKASI TANDA TANGAN DENGAN MENGGUNAKAN JARINGAN SARAF TIRUAN BACKPROPAGATION DAN SUPPORT VECTOR MACHINE
title_sort perbandingan verifikasi tanda tangan dengan menggunakan jaringan saraf tiruan backpropagation dan support vector machine
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2014
url https://repository.ugm.ac.id/130236/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=70651
_version_ 1681233114501742592