HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT

Let M be a R-module with R is a commutative ring with 1R and let N be a submodule of M. Let S be a multiplicative closed subset R containing no zero divisors of R and T = fs 2 Sjsm = 0 for some m 2 M implies m = 0g. From R and T, a quotient ring of R over T is formed which is denoted as RT . Submodu...

Full description

Saved in:
Bibliographic Details
Main Authors: , AWAN KURNIADI, , Prof. Dr. Sri Wahyuni, M.S.
Format: Theses and Dissertations NonPeerReviewed
Published: [Yogyakarta] : Universitas Gadjah Mada 2014
Subjects:
ETD
Online Access:https://repository.ugm.ac.id/131720/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72223
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
id id-ugm-repo.131720
record_format dspace
spelling id-ugm-repo.1317202016-03-04T07:52:48Z https://repository.ugm.ac.id/131720/ HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT , AWAN KURNIADI , Prof. Dr. Sri Wahyuni, M.S. ETD Let M be a R-module with R is a commutative ring with 1R and let N be a submodule of M. Let S be a multiplicative closed subset R containing no zero divisors of R and T = fs 2 Sjsm = 0 for some m 2 M implies m = 0g. From R and T, a quotient ring of R over T is formed which is denoted as RT . Submodule N of M is said to be invertible if every submodule N have an inverse in M, or for every submodule N in M, there exist an N0 = fx 2 RT jxN Mg such that N0N = M. Furthermore, if every submodules N of M is invertible then M is called Dedekind module. Furthermore from R-moduleM and submodule, a set of all homomorphisms from N to M is formed which is denoted as Hom(N [Yogyakarta] : Universitas Gadjah Mada 2014 Thesis NonPeerReviewed , AWAN KURNIADI and , Prof. Dr. Sri Wahyuni, M.S. (2014) HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT. UNSPECIFIED thesis, UNSPECIFIED. http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72223
institution Universitas Gadjah Mada
building UGM Library
country Indonesia
collection Repository Civitas UGM
topic ETD
spellingShingle ETD
, AWAN KURNIADI
, Prof. Dr. Sri Wahyuni, M.S.
HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT
description Let M be a R-module with R is a commutative ring with 1R and let N be a submodule of M. Let S be a multiplicative closed subset R containing no zero divisors of R and T = fs 2 Sjsm = 0 for some m 2 M implies m = 0g. From R and T, a quotient ring of R over T is formed which is denoted as RT . Submodule N of M is said to be invertible if every submodule N have an inverse in M, or for every submodule N in M, there exist an N0 = fx 2 RT jxN Mg such that N0N = M. Furthermore, if every submodules N of M is invertible then M is called Dedekind module. Furthermore from R-moduleM and submodule, a set of all homomorphisms from N to M is formed which is denoted as Hom(N
format Theses and Dissertations
NonPeerReviewed
author , AWAN KURNIADI
, Prof. Dr. Sri Wahyuni, M.S.
author_facet , AWAN KURNIADI
, Prof. Dr. Sri Wahyuni, M.S.
author_sort , AWAN KURNIADI
title HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT
title_short HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT
title_full HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT
title_fullStr HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT
title_full_unstemmed HUBUNGAN MODUL DEDEKIND DENGAN MODUL PHI MELALUI MODUL INVERTIBEL DAN MODUL PADAT
title_sort hubungan modul dedekind dengan modul phi melalui modul invertibel dan modul padat
publisher [Yogyakarta] : Universitas Gadjah Mada
publishDate 2014
url https://repository.ugm.ac.id/131720/
http://etd.ugm.ac.id/index.php?mod=penelitian_detail&sub=PenelitianDetail&act=view&typ=html&buku_id=72223
_version_ 1681233373791518720