The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting

Indonesia as an archipelago country relies on a limited number and clustered distributed repeat station networks. This paper explores the use of geostatistical modeling to overcome this data limitation. The model data set consisted of repeat station data from 1985 to 2015 epoch. The geostatistical m...

Full description

Saved in:
Bibliographic Details
Main Authors: Syirojudin, Muhamad, Haryono, Eko, Ahadi, Suaidi
Format: Article PeerReviewed
Language:English
Published: Nature Research 2022
Subjects:
Online Access:https://repository.ugm.ac.id/282906/1/s41598-022-10362-1.pdf
https://repository.ugm.ac.id/282906/
https://api.mendeley.com/cross_publisher_access/v2/link_resolver?t=eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiQTE5MktXIn0.I4ojzjkKudYatgUZ4_-VUx2eur7xmZKZeb-qmFM0VYAqVNvb58vVfA.Y2IKDiliAiD3_xxm.mdeTa83oNaBHbhznKFccWlOKS4OSw3D4WTO8T7bq47ofWDTgdFPL5SIFZC67CshX6mt6jkYJE3qbtddDI8oBoXqDl0Ty4AUeJAnBe62drgg-MQQ1kzopjo3nJd_2I1C_WSFy4eEPei2hY67qReNHM8uzWGIF67J4xLNSfKzNrRVv4cICQmkEKHVATiG_TovZRxZGNyncnckeQk-Wa8jloyazQSrwCmRjaVc2Rh6ZQTf3UG_RB7lm0GDc21HLjq0dwceFeRAruVedGEcLuWlLIwCqFBrYsjaRAgeAcwVeU0EO-tS4lH-lUp1Uf3VnDmCGbNt3QBm9K5wv7DajASFOmYBh3XhfxRcJrZnpNiZfgOVkOuo6XeUhcKIktQub88MIDolbMotQc2_Yt6L41QTW6N8qZa5MWcM8wvIYV6QIFK5RuIFCh931Bj5OHEAPknpyS6tY3uW5LtV1KR8l5K_ZCj79I8c.yFPTfiu0nonVIgtzL_VLUQ
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129715891&doi=10.1038%2fs41598-022-10362-1&partnerID=40&md5=f57891d12ed4e007b745f6692d152efb
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
Language: English
id id-ugm-repo.282906
record_format dspace
spelling id-ugm-repo.2829062023-11-17T02:09:01Z https://repository.ugm.ac.id/282906/ The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting Syirojudin, Muhamad Haryono, Eko Ahadi, Suaidi Geography and Environmental Sciences Indonesia as an archipelago country relies on a limited number and clustered distributed repeat station networks. This paper explores the use of geostatistical modeling to overcome this data limitation. The model data set consisted of repeat station data from 1985 to 2015 epoch. The geostatistical methods utilized included ordinary kriging (OK), collocated cokriging (CC), and kriging with external drift (KED). The model generated using these geostatistical methods was then compared to spherical cap harmonic analyses (SCHA) and polynomial models. The geostatistical model was shown to perform better, with greater accuracy in declination, inclination, and total intensity, as indicated by the root mean square error (RMSE). We have demonstrated that the geostatistical method is a promising approach in the modeling of regional geomagnetic field, especially in areas with limited and clustered distributed data. © 2022, The Author(s). Nature Research 2022 Article PeerReviewed application/pdf en https://repository.ugm.ac.id/282906/1/s41598-022-10362-1.pdf Syirojudin, Muhamad and Haryono, Eko and Ahadi, Suaidi (2022) The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting. Scientific Reports, 12 (1). https://api.mendeley.com/cross_publisher_access/v2/link_resolver?t=eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiQTE5MktXIn0.I4ojzjkKudYatgUZ4_-VUx2eur7xmZKZeb-qmFM0VYAqVNvb58vVfA.Y2IKDiliAiD3_xxm.mdeTa83oNaBHbhznKFccWlOKS4OSw3D4WTO8T7bq47ofWDTgdFPL5SIFZC67CshX6mt6jkYJE3qbtddDI8oBoXqDl0Ty4AUeJAnBe62drgg-MQQ1kzopjo3nJd_2I1C_WSFy4eEPei2hY67qReNHM8uzWGIF67J4xLNSfKzNrRVv4cICQmkEKHVATiG_TovZRxZGNyncnckeQk-Wa8jloyazQSrwCmRjaVc2Rh6ZQTf3UG_RB7lm0GDc21HLjq0dwceFeRAruVedGEcLuWlLIwCqFBrYsjaRAgeAcwVeU0EO-tS4lH-lUp1Uf3VnDmCGbNt3QBm9K5wv7DajASFOmYBh3XhfxRcJrZnpNiZfgOVkOuo6XeUhcKIktQub88MIDolbMotQc2_Yt6L41QTW6N8qZa5MWcM8wvIYV6QIFK5RuIFCh931Bj5OHEAPknpyS6tY3uW5LtV1KR8l5K_ZCj79I8c.yFPTfiu0nonVIgtzL_VLUQ https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129715891&doi=10.1038%2fs41598-022-10362-1&partnerID=40&md5=f57891d12ed4e007b745f6692d152efb
institution Universitas Gadjah Mada
building UGM Library
continent Asia
country Indonesia
Indonesia
content_provider UGM Library
collection Repository Civitas UGM
language English
topic Geography and Environmental Sciences
spellingShingle Geography and Environmental Sciences
Syirojudin, Muhamad
Haryono, Eko
Ahadi, Suaidi
The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting
description Indonesia as an archipelago country relies on a limited number and clustered distributed repeat station networks. This paper explores the use of geostatistical modeling to overcome this data limitation. The model data set consisted of repeat station data from 1985 to 2015 epoch. The geostatistical methods utilized included ordinary kriging (OK), collocated cokriging (CC), and kriging with external drift (KED). The model generated using these geostatistical methods was then compared to spherical cap harmonic analyses (SCHA) and polynomial models. The geostatistical model was shown to perform better, with greater accuracy in declination, inclination, and total intensity, as indicated by the root mean square error (RMSE). We have demonstrated that the geostatistical method is a promising approach in the modeling of regional geomagnetic field, especially in areas with limited and clustered distributed data. © 2022, The Author(s).
format Article
PeerReviewed
author Syirojudin, Muhamad
Haryono, Eko
Ahadi, Suaidi
author_facet Syirojudin, Muhamad
Haryono, Eko
Ahadi, Suaidi
author_sort Syirojudin, Muhamad
title The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting
title_short The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting
title_full The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting
title_fullStr The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting
title_full_unstemmed The accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting
title_sort accuracy of geostatistics for regional geomagnetic modeling in an archipelago setting
publisher Nature Research
publishDate 2022
url https://repository.ugm.ac.id/282906/1/s41598-022-10362-1.pdf
https://repository.ugm.ac.id/282906/
https://api.mendeley.com/cross_publisher_access/v2/link_resolver?t=eyJlbmMiOiJBMjU2R0NNIiwiYWxnIjoiQTE5MktXIn0.I4ojzjkKudYatgUZ4_-VUx2eur7xmZKZeb-qmFM0VYAqVNvb58vVfA.Y2IKDiliAiD3_xxm.mdeTa83oNaBHbhznKFccWlOKS4OSw3D4WTO8T7bq47ofWDTgdFPL5SIFZC67CshX6mt6jkYJE3qbtddDI8oBoXqDl0Ty4AUeJAnBe62drgg-MQQ1kzopjo3nJd_2I1C_WSFy4eEPei2hY67qReNHM8uzWGIF67J4xLNSfKzNrRVv4cICQmkEKHVATiG_TovZRxZGNyncnckeQk-Wa8jloyazQSrwCmRjaVc2Rh6ZQTf3UG_RB7lm0GDc21HLjq0dwceFeRAruVedGEcLuWlLIwCqFBrYsjaRAgeAcwVeU0EO-tS4lH-lUp1Uf3VnDmCGbNt3QBm9K5wv7DajASFOmYBh3XhfxRcJrZnpNiZfgOVkOuo6XeUhcKIktQub88MIDolbMotQc2_Yt6L41QTW6N8qZa5MWcM8wvIYV6QIFK5RuIFCh931Bj5OHEAPknpyS6tY3uW5LtV1KR8l5K_ZCj79I8c.yFPTfiu0nonVIgtzL_VLUQ
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85129715891&doi=10.1038%2fs41598-022-10362-1&partnerID=40&md5=f57891d12ed4e007b745f6692d152efb
_version_ 1783956350316838912