Future Glycemic Events Prediction Model Based On Artificial Neural Network
Predicting future glycemic events such as hypoglycemia, hyperglycemia, and normal for type 1 diabetes (T1D) remains a significant and challenging issue. In this study, an artificial neural network (ANN)-based model is proposed to predict the future glycemic events of T1D patients. We utilized five T...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference or Workshop Item PeerReviewed |
Language: | English |
Published: |
2022
|
Subjects: | |
Online Access: | https://repository.ugm.ac.id/283085/1/Alfian_SV.pdf https://repository.ugm.ac.id/283085/ https://ieeexplore.ieee.org/document/9990708 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Universitas Gadjah Mada |
Language: | English |
id |
id-ugm-repo.283085 |
---|---|
record_format |
dspace |
spelling |
id-ugm-repo.2830852023-11-17T08:43:51Z https://repository.ugm.ac.id/283085/ Future Glycemic Events Prediction Model Based On Artificial Neural Network Syafrudin, Muhammad Alfian, Ganjar Fitriyani, Norma Latif Hadibarata, Tony Rhee, Jongtae Anshari, Muhammad Electrical and Electronic Engineering Engineering Predicting future glycemic events such as hypoglycemia, hyperglycemia, and normal for type 1 diabetes (T1D) remains a significant and challenging issue. In this study, an artificial neural network (ANN)-based model is proposed to predict the future glycemic events of T1D patients. We utilized five T1D patient datasets to build the models and predict future glycemic events with a prediction horizon (PH) of 30 and 60 minutes ahead of time. We applied the data preprocessing method based on the sliding window approach by sliding the blood glucose time-series data from the past 60 minutes (the last 12 data points) as input and using the next 30 and 60 minutes (the next 6 and 12-th data points) as output. All the numeric blood glucose output data are then transformed into a multi-class classification label, such as hypoglycemia, hyperglycemia, and normal. Our proposed model is then used to learn and create the prediction model from the preprocessed blood glucose dataset. Four performance metrics such as accuracy, precision, recall, and f-1 score were utilized to measure the performance of the classification models used in this study, such as Naïve Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest Neighbour (KNN). The results showed that our proposed ANN-based model performed better at predicting future glycemic events than other models, with an average accuracy, precision, recall, and f-1 score of 88.649%, 76.661%, 71.731%, 72.609%, and 83.364%, 60.437%, 61.345%, 60.62% for the PH of 30 and 60 minutes, respectively. As a result, knowing this future glycemic event sooner can help patients avoid potentially dangerous conditions and can eventually be used to improve diabetes management. 2022-12-30 Conference or Workshop Item PeerReviewed application/pdf en https://repository.ugm.ac.id/283085/1/Alfian_SV.pdf Syafrudin, Muhammad and Alfian, Ganjar and Fitriyani, Norma Latif and Hadibarata, Tony and Rhee, Jongtae and Anshari, Muhammad (2022) Future Glycemic Events Prediction Model Based On Artificial Neural Network. In: 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies, 3ICT 2022, 20-21 November 2022, Sakheer, Bahrain. https://ieeexplore.ieee.org/document/9990708 |
institution |
Universitas Gadjah Mada |
building |
UGM Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
UGM Library |
collection |
Repository Civitas UGM |
language |
English |
topic |
Electrical and Electronic Engineering Engineering |
spellingShingle |
Electrical and Electronic Engineering Engineering Syafrudin, Muhammad Alfian, Ganjar Fitriyani, Norma Latif Hadibarata, Tony Rhee, Jongtae Anshari, Muhammad Future Glycemic Events Prediction Model Based On Artificial Neural Network |
description |
Predicting future glycemic events such as hypoglycemia, hyperglycemia, and normal for type 1 diabetes (T1D) remains a significant and challenging issue. In this study, an artificial neural network (ANN)-based model is proposed to predict the future glycemic events of T1D patients. We utilized five T1D patient datasets to build the models and predict future glycemic events with a prediction horizon (PH) of 30 and 60 minutes ahead of time. We applied the data preprocessing method based on the sliding window approach by sliding the blood glucose time-series data from the past 60 minutes (the last 12 data points) as input and using the next 30 and 60 minutes (the next 6 and 12-th data points) as output. All the numeric blood glucose output data are then transformed into a multi-class classification label, such as hypoglycemia, hyperglycemia, and normal. Our proposed model is then used to learn and create the prediction model from the preprocessed blood glucose dataset. Four performance metrics such as accuracy, precision, recall, and f-1 score were utilized to measure the performance of the classification models used in this study, such as Naïve Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM), and K-Nearest Neighbour (KNN). The results showed that our proposed ANN-based model performed better at predicting future glycemic events than other models, with an average accuracy, precision, recall, and f-1 score of 88.649%, 76.661%, 71.731%, 72.609%, and 83.364%, 60.437%, 61.345%, 60.62% for the PH of 30 and 60 minutes, respectively. As a result, knowing this future glycemic event sooner can help patients avoid potentially dangerous conditions and can eventually be used to improve diabetes management. |
format |
Conference or Workshop Item PeerReviewed |
author |
Syafrudin, Muhammad Alfian, Ganjar Fitriyani, Norma Latif Hadibarata, Tony Rhee, Jongtae Anshari, Muhammad |
author_facet |
Syafrudin, Muhammad Alfian, Ganjar Fitriyani, Norma Latif Hadibarata, Tony Rhee, Jongtae Anshari, Muhammad |
author_sort |
Syafrudin, Muhammad |
title |
Future Glycemic Events Prediction Model Based On Artificial Neural Network |
title_short |
Future Glycemic Events Prediction Model Based On Artificial Neural Network |
title_full |
Future Glycemic Events Prediction Model Based On Artificial Neural Network |
title_fullStr |
Future Glycemic Events Prediction Model Based On Artificial Neural Network |
title_full_unstemmed |
Future Glycemic Events Prediction Model Based On Artificial Neural Network |
title_sort |
future glycemic events prediction model based on artificial neural network |
publishDate |
2022 |
url |
https://repository.ugm.ac.id/283085/1/Alfian_SV.pdf https://repository.ugm.ac.id/283085/ https://ieeexplore.ieee.org/document/9990708 |
_version_ |
1783956371821035520 |