Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO

Use Case Point has been used in software effort estimation to calculate a project cost. One of the parameters used is the Use Case complexity weight which significantly affects estimation accuracy. Nevertheless, the current complexity weight levels result in unreliable measurement and abrupt classif...

Full description

Saved in:
Bibliographic Details
Main Authors: Ardiansyah, Ardiansyah, Ferdiana, Ridi, Permanasari, Adhistya Erna
Format: Conference or Workshop Item PeerReviewed
Language:English
Published: 2022
Subjects:
Online Access:https://repository.ugm.ac.id/283664/1/Complexity_Weights_Parameter_Optimization_of_Use_Case_Points_Estimation_using_Chaotic_PSO.pdf
https://repository.ugm.ac.id/283664/
https://ieeexplore.ieee.org/document/9971970
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Universitas Gadjah Mada
Language: English
id id-ugm-repo.283664
record_format dspace
spelling id-ugm-repo.2836642023-11-21T09:03:17Z https://repository.ugm.ac.id/283664/ Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO Ardiansyah, Ardiansyah Ferdiana, Ridi Permanasari, Adhistya Erna Electrical and Electronic Engineering Engineering Use Case Point has been used in software effort estimation to calculate a project cost. One of the parameters used is the Use Case complexity weight which significantly affects estimation accuracy. Nevertheless, the current complexity weight levels result in unreliable measurement and abrupt classification caused by discontinuous weight levels. This paper proposes a chaotic Particle Swarm Optimization for optimizing the Use Case complexity weight parameters. The optimum complexity weight parameters that minimize the mean absolute error are selected using the particle swarm optimizer. The proposed algorithm is compared with standard PSO to evaluate their performance. The experimental procedure showed that Bernoulli chaotic map yielded the best mean solution of 1008.82 and was statistically significant with $p$-values less than 0.05 (0.018). The experiment proved that the proposed algorithm is robust in finding the optimal Use Case complexity weight. 2022 Conference or Workshop Item PeerReviewed application/pdf en https://repository.ugm.ac.id/283664/1/Complexity_Weights_Parameter_Optimization_of_Use_Case_Points_Estimation_using_Chaotic_PSO.pdf Ardiansyah, Ardiansyah and Ferdiana, Ridi and Permanasari, Adhistya Erna (2022) Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO. In: 5th International Conference on Information and Communications Technology, ICOIACT 2022, 24-25 Agustus 2022, Yogyakarta. https://ieeexplore.ieee.org/document/9971970
institution Universitas Gadjah Mada
building UGM Library
continent Asia
country Indonesia
Indonesia
content_provider UGM Library
collection Repository Civitas UGM
language English
topic Electrical and Electronic Engineering
Engineering
spellingShingle Electrical and Electronic Engineering
Engineering
Ardiansyah, Ardiansyah
Ferdiana, Ridi
Permanasari, Adhistya Erna
Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO
description Use Case Point has been used in software effort estimation to calculate a project cost. One of the parameters used is the Use Case complexity weight which significantly affects estimation accuracy. Nevertheless, the current complexity weight levels result in unreliable measurement and abrupt classification caused by discontinuous weight levels. This paper proposes a chaotic Particle Swarm Optimization for optimizing the Use Case complexity weight parameters. The optimum complexity weight parameters that minimize the mean absolute error are selected using the particle swarm optimizer. The proposed algorithm is compared with standard PSO to evaluate their performance. The experimental procedure showed that Bernoulli chaotic map yielded the best mean solution of 1008.82 and was statistically significant with $p$-values less than 0.05 (0.018). The experiment proved that the proposed algorithm is robust in finding the optimal Use Case complexity weight.
format Conference or Workshop Item
PeerReviewed
author Ardiansyah, Ardiansyah
Ferdiana, Ridi
Permanasari, Adhistya Erna
author_facet Ardiansyah, Ardiansyah
Ferdiana, Ridi
Permanasari, Adhistya Erna
author_sort Ardiansyah, Ardiansyah
title Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO
title_short Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO
title_full Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO
title_fullStr Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO
title_full_unstemmed Complexity Weights Parameter Optimization of Use Case Points Estimation using Chaotic PSO
title_sort complexity weights parameter optimization of use case points estimation using chaotic pso
publishDate 2022
url https://repository.ugm.ac.id/283664/1/Complexity_Weights_Parameter_Optimization_of_Use_Case_Points_Estimation_using_Chaotic_PSO.pdf
https://repository.ugm.ac.id/283664/
https://ieeexplore.ieee.org/document/9971970
_version_ 1783956472459165696